
© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 1

Real-Time Systems Programming

RT System Classification

Summer-Semester 2002
Lecture 2

5 April 2002

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 2

Overview

1) About this Course
2) Classification of RT Systems

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 3

Where are we?

1) About this Course
¾ Aim
¾ Contents
¾ Home page
¾ People
¾ Homeworks
¾ Related classes
¾ Literature

2) Classification of RT Systems

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 4

Aim of this Course

z Ultimate objective:
you should be prepared
to develop real-world
RT applications

z But don't forget:
In theory, theory and
practice are the same –
but in practice, they
aren't ...

z There is only so much a university course can do to
prepare you for the real world. In the end, nothing
can replace actual experience with real-world
problems. But at least you should know where to
look for advice when facing a real-world design
problem.

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 5

Aim of this Course

z After this course, you should:
¾ know main characteristics of real-time (RT) systems
¾ understand main issues involved
¾ have an active working knowledge of Real-Time POSIX

and (hopefully) Real-Time Java
¾ be aware of alternative language constructs provided by

Ada 95 and other languages
¾ have practical experience with small-scale applications
¾ (perhaps) have developed a research interest in this area

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 6

Course Contents I

1) Classification of RT systems
2) C/POSIX, Real-Time Java, Ada
3) Timing Requirements
4) Dependability requirements
5) Time and Clocks
6) RT entities and RT images
7) Fault prevention and fault tolerance

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 7

Course Contents II

8) The pitfalls of C
9) Static program validation
10) Exceptions and exception handling
11) Concurrency
12) Worst-case execution time analysis
13) Scheduling
14) Operating systems for RT applications
15) Low-level programming

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 8

The Class Homepage

z www.informatik.uni-kiel.de/inf/von-
Hanxleden/teaching/ss02/rt-prog/index.html

z Contents:
¾ Lecture slides
¾ Homework assignments
¾ Current information
¾ Further links
¾ Questionnaire

z I will try to make the lecture slides available before
class – but may not always succeed ...

z Further links for example on
¾ Papers related to this class
¾ Lego Mindstorms – which are the target platform

for some of the practical homework assignments
z The questionnaire should be filled out at the end of

the semester. It would be particularly helpful if also
those students who decide to discontinue this class
for some reason during the semester would submit a
questionnaire! Thanks in advance!

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 9

People

Reinhard von Hanxleden
rvh@informatik.uni-kiel.de
(Lectures)

Alwin Stengel
ast@...
(Exercises)

Stephan Höhrmann
sho@...
(E.g., Mindstorms)

Kai Witte
kwi@...
(E.g., RT Java)

z Office hours for all of us are by appointment – the
easiest is to contact us after class

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 10

Priorities

z Course certificate (“Schein”) depends on
¾ Homework submissions
¾ Participation in class (in borderline cases)

z If in doubt, skip class, but do submit the homeworks,
and participate in their Friday afternoon discussions!

z It is probably (hopefully!) worthwhile to attend the
classes–but to some extent attending class may
certainly be substituted by just reading through
these slides, and perhaps some of the background
literature. However, there is no substitute for doing
the homeworks!

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 11

Homeworks

z Homeworks
¾ given at end of Friday lecture,
¾ due before following Thursday lecture,
¾ discussed following Tuesday afternoon

z Homeworks shall be submitted by groups
¾ Ideal group size: 2 students
¾ Each group member should be able to present submissions

z Homeworks should be submitted by e-mail
¾ To: ast@...; CC: rvh@...
¾ Only one submission per group
¾ Submissions should be ASCII-only, no attachments

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 12

Homeworks

z Late submissions
¾ will be accepted
¾ however, arbitrary point deductions may result ☺

z Questions
¾ may be asked at any time, on anything ...
¾ ... however, questions on the homework are better asked

before the deadline and before submitting the homework!

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 13

Related Classes

z Vorlesung: Synchrone Sprachen und
Modellierungswerkzeuge

z Seminar: Programmiersprachen für eingebettete
Systeme und Echtzeitsysteme
¾ Noch Themen erhältlich – bitte Dozenten ansprechen!

z Modellbahnpraktikum

¾ Vorlesung: Synchrone Sprachen und
Modellierungswerkzeuge
� Do, 14:15 - 15:45, LMS2 - R.Ü1; Fr, 10:00 - 11:30, LMS2

– R.Ü1
� W.-P. de Roever, R. von Hanxleden, K. Baukus, J.

Lukoschus
¾ Seminar: Programmiersprachen für eingebettete Systeme

und Echtzeitsysteme
� S2, Do, 11:45 - 13:15, CAP4 – R.715
� M. Hanus, K. Höppner, R. von Hanxleden
� Noch Themen erhältlich – bitte Dozenten ansprechen!

¾ Modellbahnpraktikum
� P4, Mi, 16:00 – 18:00, CAP4 – R.715
� J. Lukoschus, A. Stengel

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 14

Literature I

[Burns and Wellings 2001] Real-Time Systems and
Programming Languages, 3rd ed., Burns and Wellings,
Addison Wesley, 2001

z Aimed at RT software developers
z Good introduction into Ada 95, Real-Time Java, Real-

Time POSIX
z Authors teach at U York
z Good companion website: www.booksites.net/burns

¾ Includes code fragments – and slides, gratefully
acknowledged here ...

z 2 copies available in CS library

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 15

Literature II

[Gallmeister 1995] Programming for the Real World –
POSIX.4, Bill O. Gallmeister, O'Reilly, 1995

z Still probably the best introduction to real-time
aspects of POSIX

z Also, a hands-on (and entertaining) introduction to
real-time software design in general

z 2 copies available in CS library

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 16

Literature III

[Laplante 1997] Real-Time Systems Design and
Analysis. An Engineers Handbook, Phillip A.
Laplante, New York, IEEE Press 1997.

z Does not assume strong CS background
z Overview of all topics involved, including hardware
z 3 copies available in CS library

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 17

Literature IV

[Liu 2000] Real-Time Systems, Jane W. S. Liu, Prentice
Hall, 2000

z Probably the most systematic treatment of the
subject–solid theory

z Good description of exemplary applications
¾ Signal processing, video decompression, ...

z Focus on OS aspects of RT computing
z Author teaches at U of Illinois

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 18

Literature V

[Kopetz 1997] Real-Time Systems: Design principles
for distributed embedded applications, Hermann
Kopetz, Boston etc., Kluwer 1997.

z Focus on real-time system design
z Good introduction into inherent properties of time
z In-depth explanation of time-triggered architectures
z Author teaches at TU Vienna and is associated with

TTTech startup
z 3 copies available in CS library

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 19

Where are we?

1) About this Course
2) Classification of RT Systems

¾ The Time-Value Function
¾ Soft/firm/hard deadlines
¾ Guaranteed timeliness vs. best effort
¾ Where do temporal requirements come from?

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 20

Recall:

z Real-Time Systems:
¾ Focus is predictability – not performance per se
¾ Correct behavior = correctness + timeliness of results
¾ Must consider dynamics of physical process

z Embedded RT applications are now ubiquitous –
making the non-embedded, non-RT system now the
exception rather than the rule

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 21

The Time-Value Function

z Let f(t) be the time-value function of a real-time
computation – that is, the function expressing the
value of a result if delivered at time t

z Discontinuities of f – or of their 1st or 2nd-order
derivatives – indicate a deadline

z Another definition of RT-system: a system with a
deadline

z RT systems can be classified according to f

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 22

Soft RT Systems

z The result has (some) utility even after deadline

Delivery Time

Value
Soft Deadline

z Example: Video streaming

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 23

Firm RT Systems

z The result has zero utility after deadline

Delivery Time

Value
Firm Deadline

z Example: Speech processor in cell phone

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 24

Hard RT Systems

z Hard RT systems ≡ Safety-critical systems
z Example: Air bag controller

Delivery Time

Value

Hard Deadline

z Missing the deadline may be catastrophic

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 25

Other Types of Deadlines

z Recoverable deadline: miss triggers recovery action
¾ Example: time-out at bank teller

z Weak deadline: partial or incomplete results are
acceptable if deadline is missed
¾ Example: video decompression

z Liveline: result must be delivered after liveline
¾ Example: rolling mill

z Targetline: time at which designer aims to deliver
result; time of maximum benefit, if known
¾ Example: airbag

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 26

Notes on the Time-Value Function

z Time-value functions are not always discrete step
functions

z Also, a task may have more than a single deadline

Soft
Deadline

Live-
line

Firm
Deadline

Hard
Deadline

Target-
line

Delivery Time

Value

z For a further discussion, see A. P. Magalhães, “A
Survey on Estimating the Timing Constraints of
Hard Real-Time Systems,” Design Automation
for Embedded Systems, vol. 1, no. 3, pp. 213-230,
July 1996, Kluwer Academic Publishers, Boston

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 27

Guaranteed Timeliness vs. Best Effort

z Guaranteed timeliness:
¾ The temporal correctness of a system implementation can

be proven – i.e. substantiated by analytical arguments
(within the specified load- and fault-hypotheses)

z Best effort:
¾ Temporal correctness cannot be proven
¾ Temporal verification relies on probabilistic arguments –

testing, previous experience, etc.
z Hard RT systems should be based on guaranteed

timeliness – this implies resource adequacy

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 28

Classification of RT Systems

z Soft RT systems:
¾ The result has utility even after deadline
¾ Example: flight reservation system

z Firm RT systems:
¾ The result has zero utility after deadline
¾ Example: cell phone

z Mission-critical RT systems:
¾ Occasional timing failures are handled as exceptional

events
¾ Example: air-traffic control system

z Hard RT systems:
¾ Missing the deadline may be catastrophic
¾ Example: air-bag controller; flight control system

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 29

Further RT System Classifications

z Fail-Safe vs. Fail-Operational
¾ Error detection coverage critical
¾ Often use watch dog, heart-beat signal

z Guaranteed Response vs. Best-Effort
¾ GR: Assumption coverage critical

z Resource-Adequate vs. Resource-Inadequate
z Event-Triggered vs. Time-Triggered

¾ Dynamic vs. static scheduling
¾ Presence of global time base

z Fail-safeness is characteristic of the controlled object, not the
computer system
¾ Example: railway signalling system; if a failure is detected,

all signals can be set to red (prompting trains to stop)
z System with guaranteed response:
¾ Requires
� a rigorous specification of the underlying assumptions

(e.g., regarding the characteristics of the “worst case”/peak
load)

� a precise argument why the system does not fail if the
assumptions hold

¾ Then the probability of failure is reduced to the probability
that the assumptions hold

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 30

What is not a Real-Time System ?

z A fast system is not necessarily real-time
z RT is not about performance
z RT is about predictability
z RT does not imply ad-hoc, low-level design
z RT design should be a systematic process

¾ Architecture
¾ Programming Languages
¾ Algorithms

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 31

Temporal Requirements

Where do temporal requirements come from ?
z Determining these requirements mostly done in ad-

hoc fashion – no unified, objective method yet
z Different views:

¾ RT controller design
¾ Controlled system design
¾ Synergistic approach

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 32

The RT Controller Designer's View

z Start from pre-existing functional and timing
specification, provided by the customer

z Focus on
¾ Task scheduling
¾ Operating systems
¾ Communication protocols etc.

z Prevalently a binary view of timeliness:
¾ Time-value function assumed to be a step function
¾ Most scheduling algorithms based on this assumption
¾ No concept of timing tolerance or graceful degradation

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 33

The System Designer's View

z Tend to use (mathematical) model to describe
behavior of controlled system

z Focus on
¾ Stability analysis of controlled processes
¾ Grace time: tolerance against controller malfunctioning
¾ Reversibility: ability to recover from erroneous commands
¾ Safe state: non-dangerous system attitude, reachable by

passive means

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 34

The Synergetic Approach

z Models the controlled system and the controller as
single unit

z Concept of accomplishment levels exhibited by total
system

z Obtaining hard deadlines by considering
¾ Allowed state-space boundaries
¾ Admissible inputs
¾ Actual state-space placement as function of time

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 35

Announcement

z Next week's lectures (April 11/12) are cancelled
z As a substitute, course participants are advised to read the

following papers:
¾ Niklaus Wirth, Toward a Discipline of Real-Time Programming,

Communications of te ACM, Vol. 20, No. 8, pp. 577-583, Aug. 1977
http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ss02/emb-
pl/papers/p577-wirth.pdf

¾ Niklaus Wirth, Embedded Systems and Real-Time Programming, T.A.
Henzinger, C.M. Kirsch (Eds.): Proceedings of the First International
Workshop on Embedded Software (EMSOFT 2001), Tahoe City, CA,
USA, October, 8-10, 2001, Lecture Notes in Computer Science 2211, pp.
486-492
http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ss02/emb-
pl/papers/p486-wirth.pdf

z These references are also the basis for the first homework
(see next page)

© R. v. Hanxleden 2002 SS 2002 – Real-Time Systems Programming – Lecture_02.sdd Foil 36

Problem Set 1 – Due: 18 April 2002

1) What does the time-value functions look like for “showing
up for class” – for students and for the lecturer?
(2 + 2 pts)

2) Give one example each for soft, firm, and hard RT systems
(3x1 pts)

3) Give a brief summary of both Wirth papers (see previous
page), about 2000 chars (+/- 500) each
(4 + 4 pts)

4) Based on the papers, summarize
a) What has changed in the 24a between these two papers in

the field of real-time programming (3 pts), and
b) Which issues have remained the same (3 pts)

