
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 1

Real-Time Systems Programming

Design Stages

Summer-Semester 2002
Lecture 5

25 April 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 2

The 5-Minute Review Session

1) What is system engineering?
2) What is software engineering?
3) What is the V-Model?
4) How does the 3-V Model differ from it?
5) What are possible uses of a system model?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 3

Designing RT Systems

In the following, will discuss these design stages:
Requirement specification
Architectural Design
Implementation
Validation/Testing
Prototyping

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 4

Requirement Specification

Projects typically start with informal specification of
objectives
Next, should perform extensive analysis of
requirements

Defines functionality of system
For RT systems, requirements should include

Temporal behavior
Dependability requirements
Behavior in case of component failure

Requirements also define later acceptance tests!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 5

Requirement Specification

ALBERT (Agent-
oriented Language for
Building and Eliciting
Requirements for Real-
Time Systems)
VDM, Z, B
DOORS

Telelogic AB, 2002

Some structured/formal approaches used in
requirements analysis:

ALBERT:
E. Dubois, P.D. Bois, J. Zeippen, A formal requirements engineering method
for real-time, concurrent, and distributed systems, Proceesings of the Real-
Time Systems Conference RTS '95, Paris, France, 1995

VDM:
C. Jones, Systematic Software Development using VDM, Prentice Hall, 1986

Z:
M. Spivey, The Z Notation – A Reference Manual, Prentice Hall, 1989,
http://spivey.oriel.ox.ac.uk/~mike/zrm/

B:
The B-Book: Assigning Programs to Meanings, J.-R. Abrial,
Cambridge University Press, 1996
http://www.afm.sbu.ac.uk/b/

DOORS:
http://www.telelogic.com

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 6

Requirement Specification

Requirement analysis must characterise
System under development (SUD)
Environment where SUD will be deployed

Physical characteristics
Max. interrupt rates
etc.

Requirement specification is typically most critical
design phase!

... and, at the same time, often the phase done rather
carelessly – so better pay attention here ...

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 7

Architectural Design

Systems typically too complex to be designed at once
Design of large (RT) system must be structured

Decomposition
Systematic breakdown of complex system into smaller and
smaller parts
Want to isolate components that can be understood and
designed by individuals/small groups

Abstraction
Postpone consideration of details
In particular, try to abstract from implementation specifics
Simplifies view of system

Taken together, the two complementary approaches
of decomposition and abstraction form the basis of
most common SW engineering methodologies

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 8

Encapsulation

Decomposition of system:
Specification/design of subsystems

Abstraction:
Subsystem must have well-defined roles
Interfaces must be unambiguous

Compositional decomposition:
Entire system can be verified just in terms of subsystem
specifications

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 9

Encapsulation

Sequential programs particularly amenable to
compositional methods

Simula – introduced class construct
Modula 2 – uses module structures
OO-languages (C++, Java, Eiffel) – build upon class
construct
Ada – combination of modules and type extensions

Objects
Provide abstract interface
In concurrent environments, require extra facilites –
namely, the process abstraction

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 10

How to Decompose a System?

Objects and processes:
Provide good encapsulation facilities for system
decomposition

The remaining, critical question:
Into which parts should a system be decomposed?

Approach:
Evaluate prospective decompostions wrt certain metrics

Here, strive for decompositions that have
Strong coherence
Loose coupling

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 11

Cohesion

Cohesion:
Internal “strength” of a module
Expresses how well module holds together

Increasing order of cohesion:
Coincidental
Logical
Temporal
Procedural
Communicational
Functional

See S. Allworth and R. Zobel, Introduction to Real-Time Software
Design, MacMillan, 1987
Coincidental

E.g., modules written in same month
Logical:

Elements related in terms of overall system, but not in terms of
actual SW (e.g., all device drivers)

Temporal
Elements executed at similar times, e.g. start-up routines

Procedural
Elements used in same program section; e.g., user interface

Communicational
Elements working on same data structure

Functional
Contribute to single system function

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 12

Coupling

Coupling:
Measure of interdependence of program modules

Modules exchanging control information:
High/tight coupling

Modules exchanging data:
Loose coupling

Degree of coupling typically also expresses how easy
it is to replace a component within system

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 13

Implementation

System design should lead naturally to
implementation
However, proper design in practice still requires
knowledge of what is possible at implementation level

This also true when using auto-coding!
Implementation languages for real-time systems are a
focus of this course

Will subsequently give language overview
One aim: To sharpen your vision to distinguish the
essentials from syntactic embellishments

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 14

Validation – Testing

High reliability requirements of typical RT systems
require stringent system validation

Analytical methods
Testing, testing, testing

Difficulties:
Concurrency
Time-dependencies

System and SW testing is full discipline in its own right
Important aid in testing:

Simulators

See http://www.mtsu.edu/~storm/

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 15

Simulators

... are programs that imitate environment in which RT
SW is embedded

I/O
Interrupts

Advantages:
Reproducability
Can stop and resume operations
Safety

Costs are often significant

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 16

Prototyping

... is the construction of a “mock-up” of the final
system

Must be cheaper than building final system
Often does not exhibit dependability characteristics of
final system

Helps to ensure that requirements specification is ...
... really what customer desired
... complete

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 17

Summary

The requirements specification is a critical phase in
system development

For RT systems, requirements should include their
temporal behavior, dependability requirements, and the
behavior in case of component failure

The architectural design of a system should result in a
decomposition that exhibits strong coherence and
loose coupling
The validation of a RT system is often complicated by
their concurrent nature and their RT dependencies
Testing is a crucial part of validation, often aided by
simulators

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_05.sdd Foil 18

To Go Further

System Design
[Burns and Wellings 2001] – Chapter 2

Software Testing
http://www.mtsu.edu/~storm/

