
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 1

Real-Time Systems Programming

POSIX

Summer-Semester 2002
Lecture 6

26 April 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 2

Overview

Application Programming Interfaces
Who defines POSIX?
POSIX-compliance – what does it mean?
The structure of POSIX
POSIX systems
Mandatory vs. optional parts
Compile-time and run-time checking
POSIX-compliance – the application's part

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 3

Application Program Interfaces

Application program interface (API):
An abstraction layer between an application and the OS

Application A complies with (= is conformant to) an
API standard S:

A must be source code level portable across OSs that
conform to S

OS O complies with an API standard S:
O provides all the interface functions required by S
O may provide additional functions if these do not conflict
with the required functions

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 4

POSIX

POSIX, the Portable Operating System Interface, is
an API based on the UNIX process model

POSIX.1 specified basic UNIX calls (1990)
POSIX.4 is a set of RT extensions to POSIX.1 (1993)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 5

Who Defines POSIX?

POSIX is a (still evolving) IEEE standard
Responsible for defining POSIX:

Portable Applications Standards Committee (PASC)
Is part of IEEE Computer Society

There also exist POSIX standards from ISO, ANSI,
and national standards organizations (such as DIN)
POSIX is developed by independent, industry wide
committees

Includes representatives from all sides
Including the historically different UNIX fractions
(Berkeley, AT&T, OSF, etc.)

See www.pasc.org

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 6

POSIX is on the Shopping Lists!

SW procurement requirement documents (e.g. from
governments) often also refer to POSIX

Example: FIPS 151-2, specified by the US National
Institute of Standards Technology (NIST), specifies
POSIX.1
A product may become certified against FIPS 151-2
An agency may become certified as a FIPS 151-2
certifier

However, governments tend to get out of the
business of specifying standards

Gradually shift to referring to “commonly accepted,” non-
government standards
E.g., FIPS 151-2 was deactivated in 1998

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 7

POSIX Compliance – What Does It Mean?

Most OSs claim “POSIX-compliance” of some sort –
however, it is not obvious what exactly this buys you

What components does POSIX consist of?
How do I find out which POSIX components my OS
supports?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 8

The Structure of POSIX

POSIX consists of many individual standards
Not all of these directly related to the OS API

The POSIX components are identified by project
numbers

Example: Core POSIX real-time extensions are typically
referred to as "POSIX 1b," which refers to project
number 1003.1b

In 1994, POSIX projects have been renumbered,
such that projects that result in amendments to
1003.1 (POSIX.1) now all have the 1003.1 prefix

Example: 1003.1b had been 1003.4 (POSIX.4) prior to
renumbering

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 9

New Old Title Approval Date
1003.0 1003.0 Guide to POSIX OSE 1995-03
1003.1 1003.1 System Interface 1988
1003.1a 1003.1a System Interface Extensions
1003.1b 1003.4 Realtime 1993-09
1003.1c 1003.4a Threads 1995-06
1003.1d 1003.4b Realtime Extensions 1999-09
1003.1e/.2c 1003.6 Security
1003.1f 1003.8 Transparent File Access (withdrawn)
1003.1g 1003.12 Protocol Independent Interfaces
1003.1h Fault Tolerance
1003.1i Fixes to 1003.1b 1995-06
1003.1j 1003.4d Advanced Realtime Extensions 2000-01
1003.1k Removable Media API (withdrawn)
1003.1m Checkpoint/Restart (withdrawn)
1003.1n Fixes to 1003.1/1b/1c/1i
1003.1p Resource Limits
1003.1q Tracing 2000-09
1003.1r (withdrawn)
1003.1s Sync Clock

Alignment with Single Unix Spec

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 10

New Old Title Approval Date
1003.2 1003.2 Shell and Utilities 1992-09
1003.2a 1003.2a 1992-09

1003.2b 1003.2b Additional Utilities
1003.2d 1003.15 Batch Processing 1994-12
1003.4c 1003.4c Realtime LIS (withdrawn)
1003.5 1003.5 1992-06
1003.5a Ada update (withdrawn)
1003.5b 1003.20 Ada Realtime 1996-06
1003.5c Ada binding to 1003.1g 1998-08
1003.5d 1003.5d ADA PII - Sockets (withdrawn)
1003.5f Ada binding to 1003.21
1003.5g Ada binding to Real-Time Interfaces
1003.5f Ada binding to 1003.1s
1003.9 1003.9 1992-06
1003.10 1003.10 1995-06
1003.11 1003.11 Transaction Processing profile (withdrawn)

Shell and Utilities -
Tools & User Port. Ext.

Ada binding to 1003.1

Fortran binding to 1003.1
Supercomputing profile

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 11

New Old Title Approval Date
1003.11 1003.11 Transaction Processing profile (withdrawn)
1003.13 1003.13 Realtime profile 1998-03
1003.13a Embedded Systems AEP
1003.13b Additional Real-time Profiles
1003.14 Multi-Processing profile (withdrawn)
1003.16 1003.16 1003.1 LIS-C Binding (withdrawn)
1003.17 1003.17 Directory Services 1993-03
1003.18 1003.18 POSIX Profile (withdrawn)
1003.19 1003.19 (withdrawn)
1003.21 1003.21

1003.22 1003.22 Security Framework guide
1003.23 1003.23 1998-12

1003.24 1003.5e Ada binding: X Window Modular Toolkit
1224 1993-03
1224.1 DS (X.400) API - LIS 1993-03
1224.2 DS (X.500) API - LIS 1993-03
1295 Motif 1995

Fortran 90 binding for 1003.1
Realtime Distributed System
Communication LIS

Guide for Developing
User Organization OSE Profiles

ASN.1 Object Mgmt

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 12

New Old Title Approval Date
1326.2 DS (X.500) API - Test Methods for LIS
1327.2 DS (X.500) API - C Binding
1328.2 DS (X.500) API - Test Methods for C Binding
1351 & 1353 1238 ACSE & Pres. Layer: LI (1351). C (1353) 1994-09
1387 1003.7 System Administration
1387.1 1003.7 System Administration Overview (withdrawn)
1387.2 1003.7.2 1995-06
1387.3 1003.7.3 1996-12
1387.4 1003.7.1 (withdrawn)
2000.1 Year 2000 Terminology 1998-06
2000.1a Year 2000 Terms: Date Range Invariance
2000.2 Year 2000: Test Methods 1999-06
2003 1003.3 Test Methods
2003.1 1003.3.1 Test Methods for 1003.1 1992-12
2003.1b Test Methods for 1003.1b
2003.2 1003.3.2 Test Methods for 1003.2 1996-06
2003.5 Test Methods for Ada

Software Admin
User/Group Acct Admin
Print Admin

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 13

... and it's even more complicated:

In addition to the project number, also need the year
to refer to a standard precisely
IEEE POSIX 1003.1-1996 integrates

1003.1-1990
1003.1b-1993
1003.1c-1995

Furthermore, IEEE POSIX 1003.1-2001 integrates
1003.1d-1999
1003.1j-2000
1003.1q-2000
P1003.1a draft standard
1003.2d-1994
P1003.2b draft standard
Selected parts of 1003.1g-2000

See http://csa.compaq.com/CTJtext/Article29.html
See http://www.unix-
systems.org/version3/online.html

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 14

Which Parts do We Care About?

The most relevant parts for RT systems are
POSIX.1 (1003.1): the basic OS interfaces (fork, exec,
...)
POSIX.1b (1003.1b, was 1003.4): the RT extensions
POSIX.1c (1003.1c, was 1003.4a): the threads extensions

Each of these parts consists of
Mandatory parts and
Optional parts

Furthermore, there are still standard UNIX functions
that we may care about and that are not part of
POSIX – such as select

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 15

POSIX Systems

POSIX is a standard to allow source-code portability
On a system conforming to a particular version of
POSIX, one should be able to just compile and run those
applications that use only those POSIX functions

POSIX support consists of
A compilation system
Headers
Libraries
A run-time system

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 16

The POSIX Compilation System

The compilation system is supposed to support a
standard language
We'll assume that this is ANSI C (and thus, by
extension, Java)
In addition (or instead), we may also have

Kernighan and Ritchie (K&R) C
Ada
Fortran etc.

May have to specify compile options to get POSIX
support linked in

Example: in LynxOS, may use gcc -mposix1b

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 17

POSIX Headers

The system has to provide a set of headers that
define the supported POSIX interface
These are usually in /usr/include, but could
also be elsewhere, esp. when cross-developing
These headers are included in standard C fashion –
e.g. #include <unistd.h>

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 18

POSIX Libraries

Libraries are pre-compiled, vendor-supplied objects
that implement the POSIX functionality
The libraries are either

statically linked into the application at compile time, or
dynamically shared at run time

Normally, we do not want to look at libraries
However, we may care about

which libraries are used, and
the order in which libraries are linked in

Sometimes, archive tools such as ar or nm may be
helpful (specified in POSIX.2)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 19

The POSIX Run-Time System

After building the program, the run-time system (the
OS) allows you to run your program
For non-RT systems, not embedded systems the run
time system is typically also the development system
However, for RT applications, we are often cross-
developing, and we have to deal with

The compilation environment, a workstation or PC,
which provides a fairly user-friendly environment
The run-time environment, onto which an application is
downloaded, which often has only bare-bones facilities

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 20

Mandatory vs. Optional parts

Each of the POSIX parts may consist of
Mandatory parts and
Optional parts

Much of the functionality that is relevant for us is not
mandatory (semaphores, RT signals, shared memory,
message queues etc.)
Therefore “POSIX.1b compliance” is still not
necessarily enough!
We still need means to find out the details about the
system that we are running on

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 21

Mandatory vs. Optional POSIX.1

POSIX.1 is fairly monolithic – that is, most of it is in
the mandatory part
The only optional parts are those that were present in
some UNIX systems, but not in others
Examples for optional capabilities:

Suspension and resumption of process groups
Restricted chown
No silent truncation of overlong pathnames
Disabling of some terminal characters

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 22

Mandatory vs. Optional POSIX.1b

POSIX.1b is considered less basic, and therefore there
is only a very small mandatory part

Example: the presence of real-time queued signals
(SA_SIGINFO, SIGRTMIN, SIGRTMAX)

Everything else is optional!
This includes for example additional signal functions
(sigwaitinfo, sigtimedwait, sigqueue)

Thus, “POSIX.1b” compliance by itself means very
little!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 23

How to Find Out What is There

A solid development path has to consist of two parts:
1. Compile-time checking

Which version of POSIX am I using?
Are the options present that are needed by my application?
What are the numerical limits?

2. Run-time checking
What is the run-time system configuration?
What is the file-dependent configuration?
How is the implementation-defined behavior (e.g., what
I/O operations are permitted for certain file types)?

The latter is especially relevant for cross-development

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 24

Which Version of POSIX?

The macro _POSIX_VERSION tells us
whether POSIX is present at all
if yes, which version of POSIX we are talking about

#include <unistd.h>

main() {
/* Is this is at all a POSIX system? */

#ifndef _POSIX_VERSION
printf("POSIX is not supported!\n");

#else
/* Retrieve the POSIX version */
printf("_POSIX_VERSION = %d\n", _POSIX_VERSION);

#endif
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 25

Examples of POSIX Versions

On a Solaris system (SunOS 5.7), the test program
returns the following version:

rvh@sekunde> cc posix-test.c; a.out
_POSIX_VERSION = 199506
rvh@sekunde>

On Linux Kernel 2.4.0 (Suse 7.1 distribution), we get
the same result:

daisy{rvh} cc posix-test.c; a.out
_POSIX_VERSION = 199506
daisy{rvh}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 26

Typical POSIX Versions

The common values of _POSIX_VERSION are
198808: August 1988 is the approval date of POSIX.1 as
IEEE standard

This usually implies that the system passes the US
FIPS 151-1 test suite

199009: The system conforms to the 1990, ISO version of
POSIX

This is not significantly different from 198808
However, the system then also passes FIPS 151-2,
which is better and harder to pass

199309: mandatory POSIX 1003.1b (real-time) is
supported
199506: mandatory POSIX 1003.1c (threads) is supported
200112L: supports POSIX 1003.1-2001

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 27

Which Options are Present?

There is a feature test macro defined for every
optional part of POSIX
For example, we can find out whether a system
supports message passing as follows:
#include <unistd.h>

main() {
/* Compile-time check */

#ifdef _POSIX_MESSAGE_PASSING
printf("Message passing is supported\n");

#else
printf("Message passing is not supported\n");

#endif
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 28

Examples of Message Passing Support

SunOS 5.7 (Solaris 7) supports message passing:

rvh@sekunde> cc posix-test.c; a.out
Message passing is not supported

rvh@sekunde>

However, Linux 2.4.0 does not support it:

daisy{rvh} cc posix-test.c; a.out
Message passing is supported

daisy{rvh}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 29

What are the Numerical Limits?

If a feature is present, there may still be numerical
limits associated with this feature
Again there are feature test macros for this, defined in
<limits.h>

The standard specifies minimal limits
These are also defined in <limits.h>
If our application requires more, we have to test the actual
system limits

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 30

Example of a Numerical Limit

The results on SunOS 5.7:
#include <unistd.h>
#include <limits.h>

main() {
#ifdef _POSIX_MESSAGE_PASSING

printf("Message passing is supported\n");
printf("POSIX standard: at most %d \

message queues per process\n",
_POSIX_MQ_OPEN_MAX);

#ifdef MQ_OPEN_MAX
printf("This system: at most %d \

message queues per process\n", MQ_OPEN_MAX);
#endif
#endif
}

Message passing is supported
POSIX standard: at most 8 message queues per process

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 31

Run-Time Checking

So far, we have discussed compile-time capabilities
for examining our system capabilities
However, there are several reasons to perform run-
time checks as well:

The development platform may not be the target
platform, and there may be uncertainties about the target
platform
The target platform may change over the lifetime of our
application
There may be implementation-dependent behavior for
which there are no feature test macros available

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 32

POSIX Run-Time Checking

POSIX provides the following functions, declared in
<unistd.h>:

sysconf: tests for the presence, absence, and numerical
limits of an option on a per-system basis
pathconf: as sysconf, but testing is done on a per-
file basis
fpathconf: as pathconf, but takes instead of a path
a file descriptor to a file that we have already opened

#include <unistd.h>

long sysconf(int name);
long pathconf(const char *pathname, int name);
long fpathconf(int fd, int name);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 33

Per-System Run-Time Checks
#include <errno.h>
#include <stdio.h>
#include <unistd.h>

#define CHECK_ERRNO if (errno != 0) \
{ perror("Error in posix-test"); errno = 0; }

main() {
/* Have to reset errno */
errno = 0;

/* Run-time check for presence of message passing */
printf("sysconf(_SC_MESSAGE_PASSING) = %d\n",

sysconf(_SC_MESSAGE_PASSING));
CHECK_ERRNO;

/* sysconf() may also return a numeric value */
printf("sysconf(_SC_OPEN_MAX) = %d\n", sysconf(_SC_OPEN_MAX));
CHECK_ERRNO;

/* Better check errno for validity of argument! */
printf("sysconf(12345) = %d\n", sysconf(12345));
CHECK_ERRNO;

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 34

Run-Time Results Per System

The results on SunOS 5.7:

sysconf(_SC_MESSAGE_PASSING) = -1
sysconf(_SC_OPEN_MAX) = 1024
sysconf(12345) = -1
Error in posix-test: Das Argument ist ung?ltig

The results on Linux 2.4.0:

sysconf(_SC_MESSAGE_PASSING) = 1
sysconf(_SC_OPEN_MAX) = 64
sysconf(12345) = -1
Error in posix-test: Invalid argument

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 35

Per-File Run-Time Checks

...

main() {
/* Have to reset errno */
errno = 0;

/* Request for file-specific information */
printf("pathconf(\"my_file\", _PC_SYNC_IO) = %d\n",

pathconf("my_file", _PC_SYNC_IO));
CHECK_ERRNO;

/* Can also get information on directories */
printf("pathconf(\".\", _PC_NAME_MAX) = %d\n",

pathconf(".", _PC_NAME_MAX));
CHECK_ERRNO;

/* pathconf() complains if file does not exist! */
printf("pathconf(\"non_existing_dir\", _PC_NAME_MAX) = %d\n",

pathconf("non_existing_dir", _PC_NAME_MAX));
CHECK_ERRNO;

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 36

Run-Time Results Per File

The results on SunOS 5.7:

pathconf("my_file", _PC_SYNC_IO) = -1
pathconf(".", _PC_NAME_MAX) = 255
pathconf("non_existing_dir", _PC_NAME_MAX) = -1
Error in posix-test: Datei oder Verzeichnis
nicht gefunden

The results on Linux 2.4.0:

pathconf("my_file", _PC_SYNC_IO) = 1
pathconf(".", _PC_NAME_MAX) = 255
pathconf("non_existing_dir", _PC_NAME_MAX) = -1
Error in posix-test: No such file or directory

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 37

POSIX Compliance of the Application

So far, we looked at how the OS expresses its POSIX
compliance
However, the applications may also have varying
degrees of POSIX compliance
An application can express that it uses the POSIX API
functions (and only those functions) by defining
_POSIX_C_SOURCE with a value that expresses the
POSIX version it is conforming to
Note: Earlier versions of POSIX just defined
_POSIX_SOURCE, without giving it a value

#define _POSIX_C_SOURCE 199506

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 38

Summary on the Mechanics of POSIX

POSIX is a collection of IEEE standards
The aim is source-code compatibility
POSIX is in many areas today's de-facto industry
standard

POSIX consists of many different parts, mostly
stemming from UNIX, and originally designed for C

However, OSs such as Windows NT and applications
written in languages such as Ada or Fortran can claim
POSIX compliance as well

The most relevant parts for us are
POSIX.1
POSIX.1b (was: POSIX.4): RT extensions
POSIX.1c (was: POSIX.4a): threads

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 39

Summary on POSIX Compliance Checking

Compile-time checking, using feature test macros:
Test for _POSIX_VERSION
Test for presence of options required by app
If numerical limits guaranteed by the standard are not
sufficient, evaluate the actual limits

Run-time checking, esp. when cross-developing:
Check system configuration, using sysconf
Check file-dependent configuration, using pathconf or
fpathconf

Perform ad-hoc checks on implementation-dependent
behavior

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 40

To Go Further
POSIX and RT programming in general:

[Gallmeister 1995]
IEEE POSIX Std 1003.1-2001:

http://www.unix-systems.org/version3/online.html

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_06.sdd Foil 41

Problem Set 3 – Due: 2 May 2002

1) What are the pros and cons of using an API standard?
Discuss from the standpoint of the application developer, the
OS developer, and the final user. (3 pts)

2) Which version of POSIX does the OS you are typically using
support? (2 pts)

3) In the IEEE POSIX Std 1003.1-2001 document
a) What are the differences between “may”, “can”, and

“should”? (1 pt)
b) What are the differences between “unspecified” and

“undefined”? (1 pt)
4) Find two features where Solaris and Linux currently differ in

their level of POSIX support (apart from the ones mentioned
in class) (2 pts)

