
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 1

Real-Time Systems Programming

Expressing Time

Summer-Semester 2002
Lecture 8

3 May 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 2

Overview

1) Incorporating Time in RT Languages
Clocks
Delays
Timeouts

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 3

Real-Time Facilities

Measuring the Temporal Behavior
Accessing clocks

Controlling the Temporal Behavior
Delaying processes until some future time
Programming timeouts
Scheduling (⇒ Operating System level)

Expressing Requirements on the Temporal Behavior
Specifying rates of execution
Specifying deadlines

Analyzing Temporal Behavior
Worst-Case Execution Time (WCET) Analysis

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 4

How does a Computer Tell the Time?

Direct access to the environment's time frame
E.g., GPS receiver

Use of internal hardware clock that gives an
adequate approximation to the passage of time in the
environment

Cristal oscillator
Sometimes a combination of both

External time receiver used to initialize/synchronize
internal clock
E.g., internet node that gets its time from NTP
VCR gets time signal from TV
Wristwatch with DCF (UTC) receiver

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 5

Terminology

A clock: counter that tells the time
A clock tick: periodic event incrementing the clock
A timer: performs an action at some point in time
Clock time: reading of clock
Calendar time: time according to some standard
(UTC)
A clock device:

Clock
Timer queue (with pending expiration times)
Interrupt handler (to service timer expiries)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 6

Clock Resolutions

Resolution of a clock: granularity of the clock
expressed in physical time
Technology today permits hardware clocks with
nanosecond resolution
Applications typically only have access to software
clocks, with a resolution that is orders of magnitude
coarser (100s of microseconds ... milliseconds)
OS kernel maintains sw clocks for each supported
clock device

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 7

Low-Resolution Software Clocks

OS kernel programs clock device to raise periodic
clock interrupts
On each clock interrupt, the OS
1. increments the sw clock
2. checks the clock's timer queue
3. executes scheduler (tick scheduling)

Thread gets current time by calling a get-time
function (e.g. POSIX clock_gettime) that reads
out clock counter value

⇒ Resolution seen by the thread is given by the
frequency of the clock interrupt (typical: 10 msec)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 8

Higher-Resolution Software Clocks

Most OSs alternatively provide finer clock resolution:
Again the clock device is programmed to raise
periodic interrupts (time service interrupts)
On each clock interrupt, the OS
1. increments the sw clock
2. checks the clock's timer queue
3. executes the scheduler only every n-th time

Typical resolutions: 100s of µsec ... msec
Clock interrupt frequency bounded by

permissable overhead of clock interrupt (incl. scheduling)
jitter of clock interrupt execution time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 9

High-Resolution Hardware Clocks

Can make hw clock directly available to application
by mapping the hw clock into the address space of the
application (e.g. on Pentium processor)
However, OS may not make hw clock readable for
sake of portability (e.g. to non-Pentium machines)
Some OSs still use hw clock to improve clock
resolution:

OS reads high-res hw clock at each time-service interrupt
When servicing get-time function call, the OS

reads the hw clock again and calculates delta to last
reading
returns the current sw clock reading + the hw clock
delta

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 10

Access to Time for the Programmer

Can have time primitives in the language or in the
API

Ada: packages Calendar and Real_Time
ANSI C: <time.h> defines clock_t (clock time),
time_t (calendar time)
POSIX: supports multiple clocks/timers
Real-Time Java: class HighResolutionTime,
extended by AbsoluteTime, RelativeTime,
RationalTime

Can access time via device drivers

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 11

Ada: the Calendar Package

The package Ada.Calendar provides a sw clock
Low-resolution
Non-monotonic (includes leap seconds, leap years)

A value of the private type Time is a combination of
the date and the time of day
The time of day is given in seconds from midnight
Seconds are described in terms of a subtype
Day_Duration

Which is, in turn, defined by means of Duration

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 12

Ada.Calendar I

package Ada.Calendar is
type Time is private;
subtype Year_Number is Integer range 1901..2099;
subtype Month_Number is Integer range 1..12;
subtype Day_Number is Integer range 1..31;
subtype Day_Duration is Duration range 0.0..86_400.0;

function Clock return Time;
function Year(Date:Time) return Year_Number;
function Month(Date:Time) return Month_Number;
function Day(Date:Time) return Day_Number;
function Seconds(Date:Time) return Day_Duration;

procedure Split(Date:in Time;
Year:out Year_Number;
Month:out Month_Number;
Day:out Day_Number;
Seconds:out Day_Duration);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 13

function Time_Of(Year:Year_Number;
Month:Month_Number;
Day:Day_Number;
Seconds:Day_Duration := 0.0)

return Time;

function "+"(Left:Time; Right:Duration) return Time;
function "+"(Left:Duration; Right:Time) return Time;
function "-"(Left:Time; Right:Duration) return Time;
function "-"(Left:Time; Right:Time) return Duration;
function "<"(Left,Right:Time) return Boolean;
function "<="(Left,Right:Time) return Boolean;
function ">"(Left,Right:Time) return Boolean;
function ">="(Left,Right:Time) return Boolean;

Time_Error:exception;
-- Time_Error may be raised by Time_Of,
-- Split, Year, "+" and "-"

private
implementation-dependent

end Ada.Calendar;

Ada.Calendar II

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 14

Ada: Duration Type

Fixed point type Duration is one of the predefined
scalar types and has a range which, although
implementation dependent, must be at least -86400.0
.. +86400.0
The value 86400 is the number of seconds in a day –
excluding leap seconds
The accuracy of Duration is also implementation
dependent but the smallest representable value
Duration'Small must not be greater than 20
msec
Ada Reference Manual recommends that it is no
greater than 100 µsec

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 15

Example with Ada.Calendar

declare
Old_Time, New_Time : Time;
Interval : Duration;

begin
Old_Time := Clock;
-- other computations
New_Time := Clock;
Interval := New_Time - Old_Time;

end;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 16

Ada: the Real_Time package

The package Ada.Real_Time provides another
clock

High-resolution (1 msec or better)
Monotonic

This has a similar form to Calendar but is
intended to give a finer granularity
The range of Time (from the program's start-up)
must be at least fifty years

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 17

Calendar Time in C: <time.h>

typedef ... time_t;
struct tm {

int tm_sec; /* seconds after the minute – [0, 61] */
/* 61 allows for 2 leap seconds */

int tm_min; /* minutes after the hour – [0, 59] */
int tm_hour; /* hour since midnight – [0, 23] */
int tm_mday; /* day of the month – [1, 31] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday – [0, 6] */
int tm_isdst; /* flag for alternate daylight savings time */

};

double difftime(time_t time1, time_t time2);
/* subtract two time values */

time_t mktime(struct tm *timeptr);
/* compose a time value */

time_t time(time_t *timer);
/* returns the current time, no. of secs since 1/1/1970 */
/* if timer is not null, timer is assigned time as well */

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 18

Limitations of C/UNIX

Only one real-time clock (ITIMER_REAL), accessed
with clock()
Limited clock resolution
No detection of timer overruns
Timer expirations can only trigger SIGALARM

⇒ Enter POSIX !

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 19

POSIX Real-Time Clocks

typedef ... clockid_t;
#define CLOCK_REALTIME ...; /* clockid_t type */

struct timespec {
time_t tv_sec; /* number of seconds */
long tv_nsec; /* number of nanoseconds */

};

int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_settime(clockid_t clock_id, const struct timespec *tp);
int clock_getres(clockid_t clock_id, struct timespec *res);
int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);
int clock_getcpuclockid(pthread_t_t thread_id, clockid_t, *clock_id);

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
/* nanosleep returns -1 if the sleep is interrupted by a */
/* signal. In this case, rmtp has the remaining sleep time */

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 20

POSIX Real-Time Clocks

POSIX can support many clocks, identified by
clockid_t

IEEE standard requires that at lease one clock is
supported (CLOCK_REALTIME)
Standard requires minimum resolution to be 20
msec
tv_sec returns no. of seconds since Jan 1, 1970

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 21

Clocks in Real-Time Java

Similar to those in Ada
java.lang.System.currentTimeMillis
returns the number of milliseconds since 1/1/1970
GMT and is used by used by java.util.Date
Real-time Java adds real-time clocks with high
resolution time types
The class HighResolutionTime is base class for

class AbsoluteTime
class relativeTime
class RationalTime

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 22

RT Java: class HighResolutionTime

public abstract class HighResolutionTime implements
java.lang.Comparable

{
public abstract AbsoluteTime absolute(Clock clock,

AbsoluteTime destination);
...
public boolean equals(HighResolutionTime time);

public final long getMilliseconds();
public final int getNanoseconds();

public void set(HighResolutionTime time);
public void set(long millis);
public void set(long millis, int nanos);

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 23

public class AbsoluteTime extends HighResolutionTime
{

// various constructor methods including
public AbsoluteTime(AbsoluteTime T);
public AbsoluteTime(long millis, int nanos);
public AbsoluteTime absolute(Clock clock,

AbsoluteTime dest);
public AbsoluteTime add(long millis, int nanos);

public final AbsoluteTime add(RelativeTime time);
...
public final RelativeTime subtract(AbsoluteTime time);
public final AbsoluteTime subtract(RelativeTime time);

}

RT Java: class AbsoluteTime

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 24

public class RelativeTime extends HighResolutionTime
{

// various constructor methods including
public RelativeTime(long millis, int nanos);
public RelativeTime(RelativeTime time);
public AbsoluteTime absolute(Clock clock,

AbsoluteTime destination);

public RelativeTime add(long millis, int nanos);
public final RelativeTime add(RelativeTime time);
public void addInterarrivalTo(AbsoluteTime destination);
public final RelativeTime subtract(RelativeTime time);
...

}

public class RationalTime extends RelativeTime
{ . . .}

RT Java: class RelativeTime

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 25

RT Java: class Clock

public abstract class Clock
{

public Clock();
public static Clock getRealtimeClock();
public abstract RelativeTime getResolution();
public AbsoluteTime getTime();
public abstract void getTime(AbsoluteTime time);
public abstract void setResolution(RelativeTime resolution);

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 26

RT Java: Measuring Time

{
AbsoluteTime oldTime, newTime;
RelativeTime interval;
Clock clock = Clock.getRealtimeClock();

oldTime = clock.getTime();
// other computations
newTime = clock.getTime();

interval = newTime.subtract(oldTime);

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 27

Delaying a Process

In addition to clock access, processes must also be
able to delay their execution

either for some period of time (relative delay)
or until some point in future time (absolute delay)

Example for relative delay in Ada:

Start := Clock; -- from calendar
loop
exit when (Clock - Start) > 10.0;

end loop;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 28

Delay Primitives

To avoid busy-waits, most languages/OSs provide
delay primitives
Ada: delay statement
delay 10.0;

C/POSIX: sleep and nanosleep
Java: sleep; RT Java provides a high resolution
sleep
Note: granularity of delay and granularity of clock
not always the same
Note: sometimes delays are also referred to as
synchronous timeouts

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 29

How long is the delay really?

The actual time delay depends on
the specified delay (relative or absolute) – but this is
only the lower bound
the granularity of the clock
the processing overhead of the delay imposed by the
OS
whether interrupts are enabled when the time-out
occurs
whether a process is runnable then

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_08.sdd Foil 30

Delays

Time specified by
program

Granularity
difference
between
clock and
delay

Interrupts
disabled

Process
runnable here
but not
executable

Process
executing

Time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Relative vs. Absolute Delays

Specifying a 10 second relative delay in Ada:
START := Clock;
FIRST_ACTION;
delay 10.0 - (Clock - START);
SECOND_ACTION;

The above delay may be prolonged by interrupts
(delay is not atomic)
An alternative using an absolute delay:
START := Clock;
FIRST_ACTION;
delay until START + 10.0;
SECOND_ACTION;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Relative vs. Absolute Delays

Like relative delays, absolute delays are accurate
only in their lower bound
RT Java: sleep can be relative or absolute
POSIX: requires use of an absolute timer and signals

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Drift

The time over-run associated with both relative and
absolute delays is called the local drift and it it
cannot be eliminated
It is possible, however, to eliminate the cumulative
drift that could arise if local drifts were allowed to
superimpose

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Regular Activity

task T;
task body T is
begin

loop
Action;
delay 5.0;

end loop;
end T;

Cannot delay for less than
5 seconds

local and cumulative drift

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Periodic Activity

task body T is
Interval : constant Duration := 5.0;
Next_Time : Time;

begin
Next_Time := Clock + Interval;
loop

Action;
delay until Next_Time;
Next_Time := Next_Time + Interval;

end loop;
end T;

Will run on average
every 5 seconds

local drift only
If Action takes 6 seconds, the delay
statement will have no effect

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Timeouts

A typical requirement on an RT system:
Must recognize, and act upon, non-occurence of some
external event

An (asynchronous) timeout:
A restriction on the time a thread (or process) is prepared
to wait for some event

A timer is a means to implement a timeout
The OS

provides one or more systemwide timers to be used by the
threads (LINUX), or
allows threads to create their own timers (RT POSIX
compliant systems, Windows NT, Solaris)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Timers

A timer contains
an expiration time
(optionally) a pointer to a handler that is executed when a
timer event occurs

A thread sets (or arms) a timer when it asks the OS to
give the timer a future expiration time
A timer is canceled (or disabled) if it is set to expire
before the timer event
Further functions allow to specify what action to
perform if a timer expires

calling a function, waking up a thread, sending a message
...

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Expiration Times

Expiration times can be
absolute (specific time instant)
relative (length of delay until expiration)

Expirations can be
only once (one-shot; watchdog timer)
several times (periodic)

The granularity of time measured by the applications
is the actual timer resolution
As with delays, the requested expiration time is only
a lower bound on the actual expiration time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Ada: Timeouts on Actions

Watchdog: If an action takes too long, the triggering
event will be taken and the action will be aborted
Watchdogs are an effective way of catching run-
away code

select
delay 0.1;

then abort
-- action

end select;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Ada: Imprecise Computation

declare
Precise_Result : Boolean;

begin
Completion_Time := ...
-- compulsory part
Results.Write(...); -- call to procedure in

-- external protected object
select

delay until Completion_Time;
Precise_Result := False;

then abort
while Can_Be_Improved loop

-- improve result
Results.Write(...);

end loop;
Precise_Result := True;

end select;
end;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

RT Java: Timeouts on Actions

With Real-Time Java, timeouts on actions are
provided by a subclass of
AsynchronouslyInterruptedException
called Timed

public class Timed
extends AsynchronouslyInterruptedException
implements java.io.Serializable

{
public Timed(HighResolutionTime time) throws

IllegalArgumentException;

public boolean doInterruptible(Interruptible logic);

public void resetTime(HighResolutionTime time);
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

RT Java: Timers I

public abstract class Timer extends AsyncEvent
{

protected Timer(HighResolutionTimer time,
Clock clock,
AsyncEventHandler handler);

public ReleaseParameters createReleaseParameters();
public AbsoluteTime getFireTime();
public void reschedule(HighResolutionTimer time);
public Clock getClock();

public void disable();
public void enable();
public void start(); // start the timer ticking

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

public class OneShotTimer extends Timer
{

public OneShotTimer(HighResolutionTimer time,
AsyncEventHandler handler);

}

RT Java: Timers II

public class PeriodicTimer extends Timer
{

public PeriodicTimer(HighResolutionTimer start,
RelativeTime interval,
AsyncEventHandler handler);

public ReleaseParameters createReleaseParameters();

public void setInterval(RelativeTime interval);
public RelativeTime getInterval();

public void fire();
public AbsoluteTime getFireTime();

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

POSIX

POSIX does not directly support the Asynchronous
Transfer of Control (ATC) as Ada and Java

Therefore, it is difficult to specify timeouts on actions

POSIX does support Timers
relative or absolute times
delivers a signal upon expiration (SIGALRM by default)

Signal is delivered to whole process
In the presence of multiple threads, this makes it difficult
to identify which thread has overrun its deadline

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Timers in POSIX

#define TIMER_ABSTIME ...
struct itimerspec {

struct timespec it_value; /* first timer signal */
struct timespec it_interval; /* subsequent intvls */

};

typedef ... time_t;
int timer_create(clockid_t clock_id,

struct sigevent *evp,
timer_t *timerid);

int timer_delete(timer_t timerid);

int timer_settime(timer_t timerid, int flags,
const struct itimerspec *value,
struct itimerspec *ovalue);

int timer_gettime(timer_t timerid,
struct itimerspec *value);

int timer_getoverrun (timer_t timerid);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 10

Summary I

The programming language and/or the OS provide
access to clock times and calendar times – of varying
quality
Clock devices consist of clocks + timers
The quality of the clock accessible to the
programmer depends on how the clock is maintained
and how it is accessed
Execution may be delayed by absolute or relative
values – which provide lower bounds for the actual
delay

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 10

Summary II

Timers can be one-shot or periodic
Watchdogs can catch run-away code
Watchdogs can be implemented directly by timeouts
on actions

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

To Go Further

Incorporating Time into RT Languages
Chapter 12 of [Liu 2000]
Chapter 12 of [Burns and Wellings 2001]

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Announcement – Reminder

The class on May 10
(Friday after “Himmelfahrt”)

is cancelled
There will also be no exercise on May 14

In lieu of the class, the following reading assignment:
1. P. J. Landin, The next 700 programming languages, Communications of

the ACM, March 1966, http://www.informatik.uni-kiel.de/inf/von-
Hanxleden/teaching/ss02/rt-prog/papers/p157-landin.pdf

2. Sixto Ortiz Jr., The Battle over Real-Time Java, IEEE Computer, Vol.
32, No. 6; June 1999, pp. 13-15. http://www.informatik.uni-
kiel.de/inf/von-Hanxleden/teaching/ss02/emb-pl/papers/p13-ortiz.pdf

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_07.sdd Foil 43

Problem Set 4 – Due: 16 May 2002

1) Give a summary (2000 chars, +/- 500) of P. J. Landin, The next 700
programming languages, Communications of the ACM, March 1966. Do you
agree with his criticism of the proliferation of programming languages? Do you
think the situation has changed since then? (2 pts)

2) Java and C are case-sensitive; Ada is not. What are the arguments for and
against case sensitivity?
(2 pts)

3) Design and implement a program to measure the actual delay d of a call to
sleep(s). How does d vary as a function of s for a program written in ...
a) C ? (2 pts)
b) Java ? (2 pts)
c) Real-Time Java ? (2 pts)
d) What does the delay depend on? (2 pts)
e) What does the accuracy of your measurement depend on? (2 pts)

Note: For instructions on how to get started with RT Java with a Linux system,
you can hava a look at http://www.informatik.uni-
kiel.de/~kwi/programmierung/arbeit.html

