
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 1

Real-Time Systems Programming

Programming in the Large

Summer-Semester 2002
Lecture 9

16 May 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 2

The 5-Minute Review Session

1) Does assembler programming matter in the world of
real-time programming?

2) What are good criteria for designing a real-time
programming language?

3) What were the stated goals for the design of Ada?
4) What facilities do Ada/C/Java provide for representing

real numbers?
5) What types of real-time facilities do we distinguish?
6) How does a computer tell the time?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 3

Overview

1) Modules – information hiding
2) Separate compilation
3) Abstract data types
4) Object-oriented programming
5) Reusability

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 4

Characteristics of Real-Time Systems

Large and Complex

Concurrent control of system components
Facilities for hardware control
Extremely reliable and safe
Real-time facilities
Efficiency of execution

Acknowledgment: This lecture is based in part on the
slides kindly provided by the companion web site to
[Burns and Wellings 2001]

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 5

Programming in the Large

Real-time software systems are typically too complex
to fit this schema

Algorithms + Data Structures = Programs.
Niklaus Wirth

Algorithms + Data Structures = Modules.
[Burns and Wellings 2001]

In the following, want to explore how Ada/Java/C
support this paradigm

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 6

Recall Architectural Design

Abstraction:
Allows to postpone detailed consideration of components
Yet can specify essential part of the component
BOTTOM UP DESIGN

Decomposition:
Systematic breakdown of a complex system into smaller
and smaller parts, or modules
Until components are isolated that can be understood and
engineered by individuals and small groups
TOP DOWN DESIGN

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 7

Modules

... are a collection of logically related objects and
operations
Encapsulation — the technique of isolating a system
function within a module with a precise specification
of the interface

information hiding
separate compilation
abstract data types

How should large systems be decomposed into
modules?

The answer to this is at the heart of all Software Engineering!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 8

Information Hiding

A module structure supports reduced visibility by
allowing information to be hidden inside its body
Can separate specification and body of a module
Ideally, can compile specification without knowing
body
Modules are (typically) not first class language
entities

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 9

Information Hiding

Ada:
Have package specification and a package body
Formal relationship
Errors are caught at compile time

Java:
Has the concept of a package

A directory where related classes are stored
No language syntax to represent the specification and
body of a package

To add a class to the directory, simply put the package
name (path name) at the beginning of the source file

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 10

Information Hiding

C:
Modules are not so well formalised
Typically, programmers use

a .h file to contain the interface to a module and
a .c file for the body

No formal relationship
Errors caught at link time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 11

Separate Compilation

... is particularly desirable if program is constructed
from modules
... allows programmers to concentrate on current
module and still construct – at least in part – a
complete program

Can test separately
Can check logical consistency across program
Saves resources

Also applies to library programming

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 12

Separate Compilation

Ada:
Module specification and body are seen as distinct entities
of library
Can also provide “stub” for later inclusion (is
separate)

C:
Can include header files

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 13

Abstract Data Types

Recall: Data types
Allow programs to manipulate objects abstracted from
implementation
Can increase robustness via compile-time consistency
checking (type checking)

Taking this concept further:
Allow the user to define additional types and operations
on them
These are called Abstract Data Types (ADTs)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 14

Abstract Data Types

A module defines a type and the operations on the
type
Want to hide details of the type from user
A complication:

Want to allow separate compilation of module
specification and its body
However, compiler needs to know size of type!

The solution in ...
C: indirection (use pointers, of known size)
Java: indirection (passing by reference)
Ada: define type as private

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 15

Queue Example in Ada
package Queuemod is

type Queue is limited private;
procedure Create (Q : in out Queue);
function Empty (Q : Queue) return Boolean;
procedure Insert (Q : in out Queue; E : Element);
procedure Remove (Q : in out Queue; E : out Element);

private
-- None of the following declarations are externally visible
type Queuenode;
type Queueptr is access Queuenode;
type Queuenode is

record
Contents : Processid;
Next : Queueptr;

end record;
type Queue is

record
Front : Queueptr;
Back : Queueptr;

end record;
end Queuemod;

limited private means that only the
subprograms defined in this package can be applied
to the type
A limited private type is therefore a true abstract data
type (ADT)
If a type is declared just private, then, in addition
to the defined subprograms, assignment and equality
test are available to the user

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 16

Queue Example in C (Header File)

typedef struct queue_t *queue_ptr_t;

queue_ptr_t create();
int empty(queue_ptr_t Q);

void insertE(queue_ptr_t Q, element E);
void removeE(queue_ptr_t Q, element *E);

This .h file contains an incomplete specification

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 17

Object-Oriented Programming

ADTs by themselves not sufficient for OOP
OOP has:

Type extensibility (inheritance)
Run-time dispatching of operations (polymorphism)
Automatic object initialisation (constructors)
Automatic object finalisation (destructors)

Ada 95 supports the above through tagged types and
class-wide programming
Java supports OOP though the use of classes

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 18

OOP in Ada

Type extensions (tagged types)
Dynamic polymorphism (class-wide types)

-- Normal record type
type A is record … end record;

-- Tagged type
type EA is tagged record … end record;

-- Primitive operations
procedure Op1(E : EA; Other_Param : Param);
procedure Op2(E : EA; Other_Param : Param);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 19

OOP in Ada

-- Inherit OP1
type EA1 is new EA with record … end record;

-- Override Op2
procedure Op2(E : EA1; Other_Param : Param);

-- Add new primitive operation
procedure Op3(E : EA1; Other_Param : Param);

type EA2 is new EA1 with record … end record;
...

type EA3 is new EA with record … end record;
...

type EA4 is new EA3 with record … end record;
...

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 20

OOP in Ada

EA

EA1

EA2

EA3

EA4

Type hierarchy (family) rooted at EA
is called EA’Class

Note:
Ada supports only inheritance from a single parent
However, can achieve multiple inheritance using
the generic facilities of the language

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 21

Ada: Class-wide Programming

procedure Generic_Plot(P : Coordinates'Class) is
begin

-- Do some house keeping
Plot(P);
-- Call the Plot procedure defined for type
-- of actual value of P

end Generic_Plot;

... allows to manipulate families of types

This results in run-time dispatching
Pro: convenience, abstraction
Con: lack of predictability!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 22

Ada: Child Packages

Problem 1: If a package is changed, all clients of that
package must be recompiled

This contradicts OO's desire to facilitate incremental
development

Problem 2: Access to private types can only be made
in body of package

Hence, extending private tagged types requires further
language facilities

The solution: Child Packages
Allow access to parent’s private data without going
through the parent’s interface
Reduce recompilation

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 23

Child Packages

package Coordinate_Class is
type Coordinates is tagged private;

procedure Plot(P: Coordinates);

procedure Set_X(P: Coordinates; X: Float);
function Get_X(P: Coordinates) return Float;
-- Similarly for Y

private
type Coordinates is tagged
record

X : Float;
Y : Float;

end record;
end Objects;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 24

Child Packages

package Coordinate_Class.Three_D is
type Three_D is new Coordinates with private;

-- New primitive operations
procedure Set_Z(P: Coordinates; Z: Float);
function Get_Z(P: Coordinates) return Float;

-- Overrides the Plot subprogram
procedure Plot(P: Three_D);

private
type Three_D is new Coordinates with
record

Z : Float;
end record;

end Coordinate_Class.Three_D;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 25

Controlled Types

... allow to define subprograms that are called
(automatically) when objects of the type

are created (initialization)
cease to exist (finalization)
are assigned a new value (adjustment)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 26

Ada: Controlled Types

To gain access to these features:
Type must be derived from Controlled
This is a predefined type declared in the library package
Ada.Finalization

 This defines procedures for
Initialize

Finalize

Adjust

When a type is derived from Controlled, these
procedures may be overridden

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 27

OOP and Java

Recall: OO facilities may be based on
Type extensions (Oberon, Ada)
Introduction of classes into language (Java)

Each class encapsulates
Data (instance variables)
Operations on the data (methods including constructor
methods)

Each class can belong to a package

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 28

OOP and Java

A class may be
Local to the package or
Visible to other packages (in which case it is labelled
public)

Other class modifiers:
abstract (cannot create objects from this directly)
final (cannot derive subclasses)

Similarly, methods and instance variables have
modifiers as being

public (visible outside the class)
protected (visible only within package or in a subclass)
private (visible only to the class)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 29

Java Example

import somepackage.Element; // import element type
package queues; // package name

class QueueNode // class local to package
{

Element data;
QueueNode next;

}

// Class available from outside the package
public class Queue
{

QueueNode front, back; // instance variables

public Queue() // public constructor
{

front = null;
back = null;

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 30

Java Example
public void insert(Element E) // visible method
{

QueueNode newNode = new QueueNode();

newNode.data = E;
newNode.next = null;
if (empty()) {front = newNode;}
else { back.next = newNode; }
back = newNode;

}

public void remove(Element E) // visible method
{

if (!empty()) { E = front.data;
front = front.next; }

} // Garbage collection will free up the QueueNode object

public boolean empty() // visible method
{ return (front == null); }

}

Note:
There is no concept of a package specification as in
Ada
However, similar functionality can be provided
using interfaces – see later

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 31

Inheritance and Java

Inheritance in Java is obtained by deriving one class
from another
As Ada, Java supports only inheritance from a single
parent
However, can achieve multiple inheritance using
interfaces (see later)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 32

Inheritance and Java
package coordinate;
public class Coordinate // Java is case sensitive
{

float X, Y;

// Constructor
public Coordinate(float initial_X, float initial_Y)
{ X = initial_X;

Y = initial_Y; };

public void set(float F1, float F2)
{ X = F1;

Y = F2; };

public float getX()
{ return X; }

public float getY()
{ return Y; };

public void plot() { // plot a two D point
... };

};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 33

Inheritance and Java

package coordinate;

// Introduce a subclass of Coordinate
public class ThreeDimension extends Coordinate
{

float Z; // new field

// Constructor
public ThreeDimension(float initialX,

float initialY,
float initialZ)

{
// Call superclass constructor
super(initialX, initialY);
Z = initialZ;

};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 34

Inheritance and Java

// An overridden method
public void set(float F1, float F2, float F3)
{

set(F1, F2); // call superclass set
Z = F3;

};

// A new method
public float getZ()
{ return Z;}

// Another overridden method
public void plot() { // plot a three D point

... };
};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 35

Inheritance and Java

Unlike Ada, all method calls are dispatching
... with the associated timing unpredictability

Coordinate A = new Coordinate(0f, 0f);
A.plot(); // Plots a 2-D coordinate

ThreeDimension B = new ThreeDimension(0f, 0f, 0f);

A = B; // Recall: A and B are reference types
A.plot(); // Plots a 3-D coordinate

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 36

The Object Class

All classes are implicit subclasses of class Object
public class Object {

...
public boolean equals(Object obj);

// Methods to support monitors
public final void wait()

throws IllegalMonitorStateException, InterruptedException;
public final void wait(long millis)

throws IllegalMonitorStateException, InterruptedException;
public final void wait(long millis, int nanos)

throws IllegalMonitorStateException, InterruptedException;
public final void notify()

throws IllegalMonitorStateException;
public final void notifyAll()

throws IllegalMonitorStateException;

// Override for finalization
protected void finalize()

throws Throwable;
}

Most of these methods will be discussed further in
the context of monitors
There are further methods not listed here:
getClass()

toString()

hashCode()

clone()

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 37

Reusability

SW production is an expensive business – and costs
are still rising
One reason:

SW is typically constructed “from scratch”
Compare this with the situation in HW!

Obtaining SW reuse is a quest of SW engineering
However, apart from specific areas (e.g., numerical
analysis), this quest is still unfulfilled!

One obstacle:
Strong typing

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 38

Interfaces in Java

... augment classes to increase the reusability of code
Are similar to Ada’s generics
Are a special form of class that defines the
specification of a set of methods and constants
Allow relationships to be constructed between
classes outside of the class hierarchy
Are by definition abstract

No instances of interfaces can be declared
Instead, one or more classes can implement an interface
Objects implementing interfaces can be passed as
arguments to methods by defining the parameter to be of
the interface type

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 39

Java: Interface Example

package interfaceExamples;

public interface Ordered {
boolean lessThan (Ordered O);

};

lessThan takes as a parameter any object that
implements the Ordered interface

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 40

Java: Interface Example

import interfaceExamples.*;
class ComplexNumber implements Ordered
{

protected float realPart;
protected float imagPart;

// Interface implementation
public boolean lessThan(Ordered O)
{

// Cast the parameter
ComplexNumber CN = (ComplexNumber) O;

if((realPart*realPart + imagPart*imagPart) <
(CN.getReal()*CN.getReal() +
CN.getImag()*CN.getImag()))

{ return true; }
return false;

};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 41

Java: Interface Example

// Constructor
public ComplexNumber(float I, float J)
{

realPart = I;
imagPart = J;

};

public float getReal() {
return realPart;

};

public float getImag() {
return imagPart;

};
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 42

Java: Interface Example

package interfaceExamples;
public class ArraySort
{

public static void sort (Ordered oa[], int size)
{

Ordered tmp;
int pos;

for (int i = 0; i < size - 1; i++) {
pos = i;
for (int j = i + 1; j < size; j++) {

if (oa[j].lessThan(oa[pos])) {
pos = j;

}
}
tmp = oa[pos];
oa[pos] = oa[i];
oa[i] = tmp;

};
};

Note that when two objects are exchanged, their
reference values are exchanged

Hence, the type of object does not matter
Only prerequisite: must implement Ordered
interface

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 43

Java: Interface Example

public static Ordered largest(Ordered oa[], int size)
{

Ordered tmp;
int pos;

pos = 0;
for (int i = 1; i < size; i++) {

if (! oa[i].lessThan(oa[pos])) {
pos = i;

};
};
return oa[pos];

};
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 44

Java: Interface Example

{
ArraySort AR = new ArraySort();

// Create some (unsorted) array
ComplexNumber arrayComplex[] = {

new ComplexNumber(6f,1f),
new ComplexNumber(1f, 1f),
new ComplexNumber(3f,1f),
new ComplexNumber(1f, 0f),
new ComplexNumber(7f,1f),
new ComplexNumber(1f, 8f),
new ComplexNumber(10f,1f),
new ComplexNumber(1f, 7f)

};

// Now sort array
AR.sort(arrayComplex, 8);

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 45

Summary I

Modules support:
Information hiding
Separate compilation
Abstract data types

Ada and C have a static module structure.
C only informally supports modules

Java has a dynamic module structure called a class
Both packages in Ada (and Java) and classes in Java
have well-defined specifications which act as
interface between module and rest of program

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 46

Summary II

Separate compilation enables libraries of
precompiled components to be constructed.
The decomposition of a large program into modules
is the essence of programming in the large.
The use of abstract data types or object-oriented
programming provides one of the main tools
programmers can use to manage large software
systems

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 47

Summary III

Strong typing
is generally particularly desirable for real-time systems
due to the robustness it provides
but is an impediment to SW reuse

Java offers the interface mechanism to circumvent
this problem
Ada (and C++) provide generic primitive to enhance
reuse

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_09.sdd Foil 48

To Go Further

Programming in the large
[Burns and Wellings 2001] – Chapter 4

