
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 1

Real-Time Systems Programming

Programming in the Large
Dependability Terminology

Summer-Semester 2002
Lecture 10

17 May 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 2

Where are we?

1) Programming in the large
Object-oriented programming
Reusability

2) Dependability terminology

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 3

OOP and Java

Recall: OO facilities may be based on
Type extensions (Oberon, Ada)
Introduction of classes into language (Java)

Each class encapsulates
Data (instance variables)
Operations on the data (methods including constructor
methods)

Each class can belong to a package

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 4

OOP and Java

A class may be
Local to the package or
Visible to other packages (in which case it is labelled
public)

Other class modifiers:
abstract (cannot create objects from this directly)
final (cannot derive subclasses)

Similarly, methods and instance variables have
modifiers as being

public (visible outside the class)
protected (visible only within package or in a subclass)
private (visible only to the class)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 5

Java Example

import somepackage.Element; // import element type
package queues; // package name

class QueueNode // class local to package
{

Element data;
QueueNode next;

}

// Class available from outside the package
public class Queue
{

QueueNode front, back; // instance variables

public Queue() // public constructor
{

front = null;
back = null;

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 6

Java Example
public void insert(Element E) // visible method
{

QueueNode newNode = new QueueNode();

newNode.data = E;
newNode.next = null;
if (empty()) {front = newNode;}
else { back.next = newNode; }
back = newNode;

}

public void remove(Element E) // visible method
{

if (!empty()) { E = front.data;
front = front.next; }

} // Garbage collection will free up the QueueNode object

public boolean empty() // visible method
{ return (front == null); }

}

Note:
There is no concept of a package specification as in
Ada
However, similar functionality can be provided
using interfaces – see later

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 7

Inheritance and Java

Inheritance in Java is obtained by deriving one class
from another
As Ada, Java supports only inheritance from a single
parent
However, can achieve multiple inheritance using
interfaces (see later)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 8

Inheritance and Java
package coordinate;
public class Coordinate // Java is case sensitive
{

float X, Y;

// Constructor
public Coordinate(float initial_X, float initial_Y)
{ X = initial_X;

Y = initial_Y; };

public void set(float F1, float F2)
{ X = F1;

Y = F2; };

public float getX()
{ return X; }

public float getY()
{ return Y; };

public void plot() { // plot a two D point
... };

};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 9

Inheritance and Java

package coordinate;

// Introduce a subclass of Coordinate
public class ThreeDimension extends Coordinate
{

float Z; // new field

// Constructor
public ThreeDimension(float initialX,

float initialY,
float initialZ)

{
// Call superclass constructor
super(initialX, initialY);
Z = initialZ;

};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 10

Inheritance and Java

// An overridden method
public void set(float F1, float F2, float F3)
{

set(F1, F2); // call superclass set
Z = F3;

};

// A new method
public float getZ()
{ return Z;}

// Another overridden method
public void plot() { // plot a three D point

... };
};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 11

Inheritance and Java

Unlike Ada, all method calls are dispatching
... with the associated timing unpredictability

Coordinate A = new Coordinate(0f, 0f);
A.plot(); // Plots a 2-D coordinate

ThreeDimension B = new ThreeDimension(0f, 0f, 0f);

A = B; // Recall: A and B are reference types
A.plot(); // Plots a 3-D coordinate

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 12

The Object Class

All classes are implicit subclasses of class Object
public class Object {

...
public boolean equals(Object obj);

// Methods to support monitors
public final void wait()

throws IllegalMonitorStateException, InterruptedException;
public final void wait(long millis)

throws IllegalMonitorStateException, InterruptedException;
public final void wait(long millis, int nanos)

throws IllegalMonitorStateException, InterruptedException;
public final void notify()

throws IllegalMonitorStateException;
public final void notifyAll()

throws IllegalMonitorStateException;

// Override for finalization
protected void finalize()

throws Throwable;
}

Most of these methods will be discussed further in
the context of monitors
There are further methods not listed here:
getClass()

toString()

hashCode()

clone()

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 13

Reusability

SW production is an expensive business – and costs
are still rising
One reason:

SW is typically constructed “from scratch”
Compare this with the situation in HW!

Obtaining SW reuse is a quest of SW engineering
However, apart from specific areas (e.g., numerical
analysis), this quest is still unfulfilled!

One obstacle:
Strong typing

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 14

Interfaces in Java

... augment classes to increase the reusability of code
Are similar to Ada’s generics
Are a special form of class that defines the
specification of a set of methods and constants
Allow relationships to be constructed between
classes outside of the class hierarchy
Are by definition abstract

No instances of interfaces can be declared
Instead, one or more classes can implement an interface
Objects implementing interfaces can be passed as
arguments to methods by defining the parameter to be of
the interface type

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 15

Java: Interface Example

package interfaceExamples;

public interface Ordered {
boolean lessThan (Ordered O);

};

lessThan takes as a parameter any object that
implements the Ordered interface

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 16

Java: Interface Example

import interfaceExamples.*;
class ComplexNumber implements Ordered
{

protected float realPart;
protected float imagPart;

// Interface implementation
public boolean lessThan(Ordered O)
{

// Cast the parameter
ComplexNumber CN = (ComplexNumber) O;

if((realPart*realPart + imagPart*imagPart) <
(CN.getReal()*CN.getReal() +
CN.getImag()*CN.getImag()))

{ return true; }
return false;

};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 17

Java: Interface Example

// Constructor
public ComplexNumber(float I, float J)
{

realPart = I;
imagPart = J;

};

public float getReal() {
return realPart;

};

public float getImag() {
return imagPart;

};
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 18

Java: Interface Example

package interfaceExamples;
public class ArraySort
{

public static void sort (Ordered oa[], int size)
{

Ordered tmp;
int pos;

for (int i = 0; i < size - 1; i++) {
pos = i;
for (int j = i + 1; j < size; j++) {

if (oa[j].lessThan(oa[pos])) {
pos = j;

}
}
tmp = oa[pos];
oa[pos] = oa[i];
oa[i] = tmp;

};
};

Note that when two objects are exchanged, their
reference values are exchanged

Hence, the type of object does not matter
Only prerequisite: must implement Ordered
interface

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 19

Java: Interface Example

public static Ordered largest(Ordered oa[], int size)
{

Ordered tmp;
int pos;

pos = 0;
for (int i = 1; i < size; i++) {

if (! oa[i].lessThan(oa[pos])) {
pos = i;

};
};
return oa[pos];

};
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 20

Java: Interface Example

{
ArraySort AR = new ArraySort();

// Create some (unsorted) array
ComplexNumber arrayComplex[] = {

new ComplexNumber(6f,1f),
new ComplexNumber(1f, 1f),
new ComplexNumber(3f,1f),
new ComplexNumber(1f, 0f),
new ComplexNumber(7f,1f),
new ComplexNumber(1f, 8f),
new ComplexNumber(10f,1f),
new ComplexNumber(1f, 7f)

};

// Now sort array
AR.sort(arrayComplex, 8);

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 21

Summary

Strong typing
is generally particularly desirable for real-time systems
due to the robustness it provides
but is an impediment to SW reuse

Java offers the interface mechanism to circumvent
this problem
Ada (and C++) provide generic primitive to enhance
reuse

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 22

Where are we?

1) Programming in the large
2) Dependability terminology

Reliability
Safety
Maintainability
Availability
Security

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 23

Dependability Requirements

Dependability: The metafunctional attributes of a
system that relate to the quality of service to its users
during an extended interval of time

Reliability
Safety
Maintainability
Availability
Security

Dependability is often the critical aspect of real-time
systems!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 24

Reliability

Given: System operational at time t
Reliability of system:

Probability R(T) that system will provide specified service
throughout an interval [t, t + T]

Failure rate
Expected number λ(T) of failures of the system for a time
interval T

R(T) = e-λ(Τ)

Mean Time to Failure (MTTF): 1/λ
Ultrahigh reliability: typically MTTF > 109 hrs

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 25

Safety

Malign (critical) failure mode:
“Cost” of failure exceeds utility of system during normal
operation by orders of magnitude
Airbags, airtraffic control, nuclear power plants, ...

Benign failure mode:
Uncritical failures

Safety:
Reliability regarding critical failure modes

Typical:
Need ultra-high reliability
No single component failure may lead to critical system
failure (e.g., TÜV)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 26

Maintainability

Given: System with benign failure at time t
Maintainability:

Probability M(T) that system is repaired within [t, t + T]
Repair rate:

Expected number µ(T) of repairs of the system for a time
interval T

Mean Time to Repair (MTTR): 1/µ
There is often a conflict between reliability and
maintainability

Example: hardware modularisation

 M(T) = e-µ(Τ)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 27

Availability

Mean Time Between Failures (MTBF)

Availability:
Probability A that a system will provide specified service

For systems with constant λ and µ:

Can increase A by increasing MTTF or by
decreasing MTTR – or both

A = MTTF/MTBF

MTBF = MTTF + MTTR

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 28

Downtime

Availability corresponds to certain downtime

Availability Downtime/year Example Component
90% > 1 month Unattended PC
99% Maintained PC
99,9% Cluster
99,99% Multicomputer
99,999%
99,9999%

≈ 4 days
≈ 9 hrs
≈ 1 hr
≈ 5 mins Embedded System (PC hw)
≈ 30 secs ES (special hw)

[Veríssimo and Rodrigues
2001]

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 29

Security

Security:
Ability to prevent unauthorized access to information or
services
Confidentiality, privacy
Theft, fraud

Traditionally an issue for database/transaction systems
Increasingly relevant for embedded systems as well
(message interception/alteration, property protection)
Difficult to quantify

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 30

Summary

The Dependability of a system is given by its
Reliability: Measure of continuous delivery of correct
service
Safety: Reliability wrt critical failures
Maintainability: Measure of time to restoration of correct
service
Availability: Reliability + Maintainability
Security: Ability to prevent unauthorized access to
information or services

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_10.sdd Foil 31

To Go Further

Dependability:
[Veríssimo and Rodrigues 2001], Chapter 6

[Kopetz 1997], Chapter 6

[Burns and Wellings 2001], Chapter 5
Precise, Widely-Used Terminology on Dependability:

Laprie, J. C. (Ed.), Dependability: Basic Concepts and
Terminology, Springer, 1992 (Working Group 10.4 on
Fault-Tolerant Computing of the International Federation
of Information Processing (IFIP))
Terms are defined in English, French, German, Japanese

