
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 1

Real-Time Systems Programming

Introduction to Mindstorms

Summer-Semester 2002
Lecture 12

24 May 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 2

Overview

1) The robotics command system (RCX)
2) Family history – Media Lab's programmable bricks
3) The RIS standard programming environment
4) Alternative developments
5) legOS

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 3

Recall: What is a Real-Time System ?

A definition: Real-time systems (RT-Systems) are
those computational systems that

offer an assurance of timeliness of service provision

Another definition: RT-systems are those where the
correctness of the system behavior depends

on the logical results of the computations, and also
on the physical time when these results are produced

Yet another definition: RT-systems are those that
have to be designed according to the dynamics of a
physical process

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 4

Lego Mindstorms – Introduction

Mindstorms: technically most advanced Lego brand
Mindstorms Robotics Invention System (RIS): allows
 construction and programming of various robots

Knudsen/O'Reilly

The main applications are autonomous vehicles –
but numerous other machines have been built as
well: card dealers, copy machine, Mars rover,
walker, fire extinguisher, ...

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 5

Robot ≠ Robot

IEEE Spectrum

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 6

Are These Still Robots?

IEEE Spectrum

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 7

The Robotics Command System

The core of the RIS is the Robotics Command System
(RCX)

Hitachi H8 Microcontroller
3 sensor inputs

Touch sensor
Light sensor
Rotational sensor

3 motor outputs
Infrared port
Speaker

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 8

The RCX – A Typical Real-Time System!

The RCX is a typical real-time system and has to
incorporate time in its actions on various scales
Macroscopic real-time aspects:

The duration of motor-on signals and the positioning of
the robot are directly interrelated
Most meaningful robotic strategies have to make use of
delays and time-outs at some point

Microscopic real-time aspects:
The motors are controlled using pulse-width modulation
The speaker must be able to generate various frequencies

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 9

Example: Scanner

RT Problem: Correlation sensor data – pixel coordinates

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 10

The RCX – A Typical Embedded System!

RCX is controlled by a digital CPU ...
... but still quite different from a non-embedded computer

RCX Laptop
Applications Robot Control

Cost

Unit count
Size 6.5 x 3.5 x 9.5 = 216 cm³ 31.0 x 3.5 x 26.5 = 2875 cm³
Weight 220 g 2850 g
Power 6 AA Batteries 16V, 4.5A (72W) transformer
SW Updates To be avoided

“General Purpose”
Office applications,
SW development, ...

€ 220,-
Includes SW and building
materials for a robot

€ 2500,-
Barely any SW,
no peripherals

100 000s (?) 1000s (?)

No problem (ahem ...)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 11

RCX vs. Laptop – Hardware Comparison

Differences in requirements ⇒ differences in design
RCX Laptop

CPU

Speed 16 MHz 800 MHz
RAM 32 KB 192 MB
ROM 16 KB 192 KB (?)
Addl. storage None
Display 1 x 3 cm² LCD 28.5 x 21.5 cm² = 613 cm² TFT
Keyboard 4 buttons 94 buttons + mouse

Hitachi H8
(8-Bit microcontroller)

Pentium III
(32-Bit microprocessor)

20 GB harddrive

Further
Interfaces

3 sensors, 3 actuators
IR port, speaker

USB, serial, parallel, Ethernet, modem,
PCMCIA, int./ext. speakers, int./ext.
mike, ext. monitor, ext. keyboard/
mouse, CD/DVD, floppy, IR Port

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 12

Mindstorms Family History

Mindstorms Roboter: strongly influenced by
Programmable Brick project
at the Media Lab of the Massachussets Institute of
Technology (MIT)

1971: “Twenty Things to Do with a Computer”
1987 to 1989: The 6502 Programmable Brick

Focus on children, ran a LOGO interpreter

1989 to 1991: Electronic Bricks
Attempt to provide a concrete paradigm for “wiring”
behaviors rather than programming them

“Twenty Things to Do with a Computer”, by
Seymour Papert and Cynthia Solomon was a
visionary paper that already outlined many
concepts that reached reality much later

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 13

More Programmable Bricks

1993 to 1995: The Pocket Programmable Brick
Very compact
Had IR port, 8 sensor ports, 4 motor ports, sound I/O
Runs Brick Logo

1994 to present: The Model 120
Programmable Brick

More economical version of the
Pocket Programmable Brick
Look and feel of a commercial
product

1998: Lego Mindstorms

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 14

The Next Generation: Crickets

Cricket
Also from MIT Media Lab
Cross-breeding between Programmable Brick and
wearable Thinking Tag
Powered by 9V battery
2 actuators (motors)
2 sensors
IR communication

Example Applications:
Robotic
Body monitoring
Data collection

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 15

Designing a Robot with the RIS

Design of a Mindstorms robot consists of two steps:
Building the robot

An art in itself
Numerous texts on mechanical robot design in general and
the mechanics of Lego bricks in particular
Not be the focus of this class

Programming the robot
Will concentrate on this step
RIS comes with a programming environment ...
... and the Mindstorms user community has also
developed several alternatives by now

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 16

The RIS Programming Environment

Consumer profile (intended) of Mindstorms brand:
Aged 12+
No prior programming experience

RIS comes with graphical programming environment
Cross Development:

Programs developed on a Windows platform
Then download (via the IR port) to the RCX

RIS programming environment
Produces byte code
This then interpreted by firmware on the RCX

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 17

The RIS Programming Environment

On the development platform (Windows), there is
RCX code (Brick language)
Spirit.ocx – an ActiveX-Control on which the Brick
language development system is based

Byte code transferred to the RCX via
Serial port of the PC + IR transmitter

On the run-time platform (the RCX)
RAM: Byte code + Firmware
ROM: Boot firmware

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 18

The Brick Language

The graphical language consists of bricks of different
color (this is Lego, after all ...)
Green:
Commands
Blue:
Sensor Watchers
Red:
Control Blocks
Yellow:
Macro Blocks

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 19

The Brick Language

In principle, the language
has all there is needed for programming a robot
including some (from a classical CS-point of view) non-
standard features

Concurrency
Note: if the trigger for a task that is already running is
activated again, the task is re-started immediately

Sensor/actuator control
Delay and time-out primitives

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 20

Limitations of the Brick Language

No variables – just a simple counter
No expressions
No function calls
No nesting
Incomplete control of machine state
No concept of protected resources or atomic actions

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 21

Cracking the RCX

Mindstorms users have undertaken extensive reverse-
engineering efforts of the RCX shortly after they hit
the market in early September 1998
By Oct. '98, Kekoa Proudfoot (Stanford U) had
reverse-engineered the RCX opcodes, thus opening
the door for

Low level programming
Additional tools
Non-Windows development platforms
The ultimate: firmware replacement
(no byte code no more!)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 22

NQC – Not Quite C

NQC replaces the RIS development system
Closely resembles C
Code is compiled and downloaded
As it does not use spirit.ocx anymore, it is not
restricted to Windows – also runs under MacOS and
Linux
There also exists a windows-based interface to this,
RcxCC

Editor with syntax-highlighting
Real-time control of the RCX

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 23

Example in NQC: Light Watcher

Control Software of a robot that follows a line
Uses the light sensor

int state;

#define LEFT 0
#define RIGHT 1

#define DARK2 35
#define LIGHT2 40

#define POWER 7

#define TIMEOUT 50

task main() {
state = LEFT;
SetSensor(SENSOR_2, SENSOR_LIGHT);
SetPower(OUT_A + OUT_C, POWER);
start lightWatcher;

while (true) {
if (SENSOR_2 < DARK2)

OnFwd(OUT_A + OUT_C);
}

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 24

Light Watcher II

sub: denotes a subroutine

task lightWatcher() {
while (true) {

if (SENSOR_2 > LIGHT2) {
toggle();
Wait(TIMEOUT);
if (SENSOR_2 > LIGHT2) {

toggle();
Wait(TIMEOUT * 2);

}
}

}
}

sub toggle() {
if (state == LEFT) {

OnRev(OUT_A);
OnFwd(OUT_C);
state = RIGHT;

}
else {

OnFwd(OUT_A);
OnRev(OUT_C);
state = LEFT;

}
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 25

Limitations of the Original Firmware

NQC still produces original byte code
Programs written in NQC therefore have the same,
firmware-induced limitations:

Only 32 variables
Limited hardware and display control
No real process synchronization
At most 10 simultaneous tasks
Subroutines: no nesting, no parameters, max 8 per program

To overcome these restrictions: Firmware
Replacement

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 26

pbFORTH – A Firmware Replacement

pbFORTH is a Forth dialect
Stack-based
Commands are interpreted interactively
One programs by successively extending a dictionary
There is a set of pre-defined words that manipulate the
stack: DUP, OVER, PICK, SWAP, ROT, DROP, ...
There are also words for control flow, mathematical
operations, etc.

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 27

pbFORTH Capabilities

pbFORTH contains words for controlling sensors and
actuators, and the LCD display
Timers:

As in the Brick language, four 1/10-sec timers
In addition, ten 1/100-sec timers

Functions for power management:
POWER_OFF, POWER_GET

Cooperative (instead of preemptive) multi-tasking

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 28

A Thermometer in pbFORTH

HEX

: buttonState RCX_BUTTON DUP BUTTON_GET @ ;

: isRunButtonPressed buttonState 1 AND ;

: showTemperature
3003 SWAP 3001 LCD_NUMBER
LCD_REFRESH ;

: clear LCD_CLEAR LCD_REFRESH ;

: thermometer
RCX_INIT SENSOR_INIT BUTTON_INIT
2 1 SENSOR_TYPE
A0 1 SENSOR_MODE
BEGIN

BEGIN
1 SENSOR_READ 0=

UNTIL
1 SENSOR_VALUE
showTemperature
isRunButtonPressed

UNTIL
clear ;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 29

The pbFORTH Design Flow

On the development platform (Windows, Linux,
MacOS, ...):

Terminal emulator
Transfer byte code via the serial port of the PC and
the IR transmitter
On the run-time platform (the RCX):

in RAM: Application code + pbFORTH interpreter
in ROM: Boot firmware

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 30

legOS – Another Firmware Replacement

legOS: a firmware replacement
Developed by Markus Noga (TU Karlsruhe) and others
Provides basic POSIX functionality

Process management
Event notification
Counting semaphores

Allows running the RCX in native mode
Can use full 32 KB memory (remember – this is the
embedded world)
Development platform does not have to be Windows – can
be Linux, for example

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 31

Developing for legOS

Code running on legOS can be compiled using gcc
There exists a Hitachi H8 backend for gcc
Can make full use of the C language – arrays, pointers,
memory allocation, ...
No limit of 32 variables

There are also simulators for legOS
emulegOS
legosim
Warning: usually the simulators are a couple of revisions
behind legOS itself

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 32

Parts of a legOS Program

A program running on top of legOS consists of
Hitachi-H8 machine code and several data areas
The parts of an RCX binary are:

.text: program code; also contains initialized, constant
data
.data: initialized, variable data
.bss: non-initialized, variable data
.stack: run-time stack for local variables, return
addresses etc.

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 33

Interpreted vs. Native Code

Interpreted code (the RCX byte code, pbFORTH)
requires an interpreter at the run-time system (increases
space requirements)
allows higher level coding – for example, “motor off”
instead off “increment X (decreases space requirements)
has interpretation overhead (decreases speed)
may have restricted functionality relative to native code
is portable

Native code (running legOS)
no restriction on hw capabilities
no interpretation overhead
not portable

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 34

A Warning

As is typical for embedded systems,
there are no built-in protection mechanisms
there is no “protected mode”

Firmware and any application may read or write any
address
The good news:

If all fails, we can take out the batteries – and start over
again;
There is no way to destroy the boot loader stored in ROM

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 35

And there is more ...

Several Java virtual machines
RCX has also been programmed in

Ada (via an Ada2NQC translator)
Scheme
C++
Basic

Users have also written
a utility to program the RCX using just the RCX buttons
a Jini/Mindstorms driver

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 36

To Go Further

Mindstorms:
Links from class homepage

Jonathan Knudsen, “Lego Mindstorms”, O'Reilly, 1999

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_12.sdd Foil 37

Problem Set 6 – Due: 30 May 2002

Build a Mindstorms robot that performs the following tasks:
Upon program start, the robot starts moving forward.
As soon as the robot (completely) crosses a dark line, it stops.
The robot measures and displays the following values:

T: the time from start to stop;
D: the distance from start to stop; and
L: the thickness of the crossed line.

a) Documentation (overview of approach and assumptions, commented source
code) (3 pts)

b) Functional robot (2 pts)
c) Why is this a real-time problem? (1 pt)
d) What are the real-time entities/images/representatives involved? (2 pts)
e) What can you say (qualitatively and quantitatively) about the errors in your

measurements? (3 pts)

Please bring your robot along for the homework discussion on Tuesday.
Enjoy!

