Real-Time Systems Programming

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Summer-Semester 2002
Lecture 13
30 May 2002

q Dependabitity Conto,

"

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 1

The 5-Minute Review Session

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

1) What are real-time entities/representatives/images?
What may cause them to differ?

2) What 1s a rule of thumb for selecting a sampling rate?

3) How can we compensate a sampling delay? How can
we compensate a sampling jitter?

4) What 1s temporal accuracy?

5) What 1s the difference between parametric and phase-
sensitive RT 1images?

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 2

Overview

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

1) Failures
2) Errors

3) Faults
4) Fault Prevention vs. Fault Tolerance

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 3

Where are we?

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

1) Failures
— Nature
— Perception
— Effect
— Oftenness
— Origins

2) Errors

3) Faults

4) Fault Prevention vs. Fault Tolerance

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 4

Recall: Fault, Error, Failure

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Failure (“Ausfall”):
> Deviation of actual service from specified service
(external state)
+ Control surface on wing moves erroneously
+ Airbag does not ignite

® Error (“Fehlzustand”):

> Unintended (internal) system state
+ Short circuit (excessive current, low voltage)
+ Variable out of range

® Fault (“Fehler”):

> Cause of an error
+ Broken isolator, software bug
+ Specification fault

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 5

Classification of Failures

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

Failure

!

]

Nature Perception

—— Value

— Timing

R. v. Hanxleden

— Consistent

— Inconsistent

SS 2002 — Real-Time Systems Programming — Lecture 13.sdd

}

}

Effect Oftenness

— Benign

— Malign

— Permanent

— Transient

Foil 6

Failure Nature

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

Failure
: ' ! |
NatJ‘ure Perception Effect Oftenness
v v
— Value Domain — Timing Domain
_, Constraint Failure ~ Commission
(Detectable) + Early
. Value Failure + Late
(Possibly undetectable) o
- Omission

® Arbitrary failures:
> Combinations of value and timing domain failures

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 7

Failure Perception

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

Failure
! I \ ! l
Nature Perce!)tion Effect Oftenness
v v
Inconsistent Consistent

® [n system with more than one user:
> Consistent failures:
+ Perceptions of the users are the same
> Inconsistent failures:
+ Perceptions are different

+ Also referred to as rwo-faced failures, malicious
failures, or Byzantine failures

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 8

System Classification

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Given: consistent failure perception

® Fail silent. System produces either correct results
(both 1n value and time domains) or no results at all

® Fail crash: Fail-silent system that stops operating
after the first failure

® Fail stop: Fail-crash system that makes its failure
known to other systems

® Fail (un-)controlled: System that fails in a(n) (un-)
controlled manner

® Fail-never: System that always provides correct
services 1n both the timing and value domains

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 9

Failure Effect

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

Failure

|
! } ! }

Nature Perception Effect Oftenness

v v
Malign Benign

® The classification of a failure effect depends on the
characeristics of the controlled application

® Safety-critical applications are those where a malign
failure can occur

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 10

Failure Oftenness

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

Failure

|
! ! } }

Nature Perception Effect Oftenness

|
v v

Transient Permanent

® Single failure
> Failure occurs only once within a given time interval
® Permanent failure
> System ceases to provide service until repair
® Transient failure
> System continues service
® [ntermittent failure
> Frequently occurring transient failure

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 11

e Example of permanent failure:
> Broken wire

e Example of intermittent failure:
> Heat-sensitive hardware device

Permanent Failures

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® A typical VLSI device failure rate develops according
to the “bathtub pattern™:

> A relatively high failure rate for the first few hundred
hours of operation (burn-in)

> After that, stabilization at about 10-100 FIT (= Failures per
10° hrs — MTTF of about 115 Kyrs)
> At some point, an increased failure rate again (aging)

Failure

rate \ /
= f

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 12

Preventive Maintenance

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Failure rate of a VLSI chip
> Depends mainly on physical parameters (pins, packaging)
> Not very sensitive to the number of transistors

® Preventive maintenance

> Exchange of components before they fail

> Limits effects of aging

® [fthere is no aging, then there is no point in
preventive maintenance!

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 13

Transient Failures

® Transient chip failure rate

» Can be 10 — 100 000 x permanent failure rate

> Depends on physical environment
® Most common causes are

> Electromagnetic interferences (EMI)

> Power supply glitches

> High-energy particles (e.g., a-particles)
® Example from radar monitoring [Gebman et al. 1988]:

> Malfunctions noticed every 6 flight hrs

> Maintenance request every 31 hrs

> Only every 3" failure could be reproduced!

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 14

Origins of Failure

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Rule of thumb (JPL data):

> 1 major fault every 3 pages of requirements

> 1 major fault every 21 pages of code

® Fault statistics for some NASA space projects:

> Coding faults: 6% of overall faults (!!!)
» Function faults: 71% (due to requirements/design problems)
> Interface faults: 23% (due to poor comm. between teams)

® (Observation:

> Most severe faults are introduced early but are detected
late! (often during system integration)

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 15

® These statistics were kindly provided by Gerald Luettgen
(University of Sheffield)

Origins of Failure

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Results of one study on large information systems
(Tandem):

> >40% of failures due to human operator faults
> 25% caused by software faults
> Large contribution by environmental factors
+ Power outages
+ Fires, floods
> Smallest contributor: (random) hardware faults

® One of the lessons:

> Need not only hw fault tolerance, but also sw fault
tolerance!

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 16

® J. Gray, “Why do Computers Stop and What Can be done
About It?,” Proceedings of the 5" IEEE Symposium on
Reliability in Distributed Software and Database Systems, Los
Angeles, USA, p. 3-12, 1986

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

1) Failures

2) Errors
— Classification
3) Faults

4) Fault Prevention vs. Fault Tolerance

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 17

Where are we?

Errors

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Most controller failures can be traced to an incorrect
internal state —1.e., a wrong data element

e Similarly to failures, we can classify errors as

> Transient errors: exists only for short interval, disappears
again without explicit repair action

> Permanent errors: require explicit repair

® Fault-tolerant architecture
> Every error confined to an error containment region
> This avoids error propagation

® Error detection interfaces

> Protect boundaries of error containment regions

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 18

Transient Errors

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Errors are predominantly transient

® Typical, simple control cycle structure:

> Read inputs (sensors)
> Compute reaction

> Write outputs (actuators)

® Wrong input on one cycle does not affect next cycle

® Typically, each cycle can release only a finite amount
of energy

> Results in transient error tolerant design

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 19

Permanent Errors

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Example: database

> Maintains large state

> Any introduced error 1s likely to be permanent — 1.e.,
requires an explicit correction

» Without corrections, data base erosion occurs

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 20

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

1) Failures
2) Errors
3) Faults
— Models
— Classification
4) Fault Prevention vs. Fault Tolerance

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 21

Where are we?

Interaction Fault Models

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® First step to building fault-tolerant system:
> Define a fault model

:ARBITRARY
P — N semantic
timing
omission syntactic
[crash | “\\Je
0‘0’& Ps _
A
. v
[Verissimo and Rodrigues
20017
R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 22

® Omissive Faults: A component does not perform
some 1nteraction when specified to

® Assertive Faults: A component does perform some
interaction when not specified to

> Syntactic Faults: construction of interaction 1s
incorrect (e.g., Temp = “+ab”)

> Semantic Faults: meaning conveyed by interaction
1s incorrect (e.g., Temp = “-99”)

Fault Classification

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

Fault
v v ‘ v Y. Y
—Nature —Perception —Boundaries [—Origin —Persistence
~Chance ~Physical ~Internal ~Development ~Transient
~Intentional +Design ~External +Operation ~Permanent

® Sce [Laprie 1992] for more details

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 13.sdd

Foil 23

Where are we?

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

1) Failures
2) Errors

3) Faults
4) Fault Prevention vs. Fault Tolerance

— Hardware fault avoidance

— Software fault avoidance

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 24

Approaches to Achieving Reliable Systems

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Fault prevention

> Attempts to eliminate any possibility of faults creeping
into a system before it goes operational

> Fault avoidance

+ Limit introduction of faults during system
construction

> Fault removal
+ Find and remove the causes of errors
® Fault tolerance

> Enables system to continue functioning even in the
presence of faults

® Both approaches attempt to produces systems which
have well-defined failure modes

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 25

Hardware Fault Avoidance

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

® Use of the most reliable components within the
given cost and performance constraints

® Use of thoroughly-refined techniques for
interconnection of components and assembly of
subsystems
> Plugs and soldered connections are often the weakest
points
® Packaging the hardware to screen out expected forms
of interference

> E.g. EMI shielding, Single Event Upset (SEU) resistence
in avionics and space applications

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 26

Software Fault Avoidance

CEEEEEEEEEEE00000E0E0006066666666
® Software

> Does not deteriorate (by itself) with use

> Often much more complex than hw counterparts

> Virtually impossible to design fault-free
® Banana software approach

> “Ripes at the customer”

> Not untypical in consumer and business sw

> With RT systems usually not an option

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 27

Software Fault Avoidance

CEEEEEEE00EEEEE00000EE0EEEE60E060E
® SW can be improved by
> Rigorous, 1f not formal, specification of requirements
> Use of proven design methodologies
> Use of languages with
+ data abstraction

+ modularity

> Use of sw engineering environments to manage
complexity

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 28

Summary

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® We distinguish between fault, error, and failure

® Among the predominant causes are human operator
error and software faults

® Hardware faults are less common causes

® [n simple control structures, transient input faults may
only lead to transient system failures

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 13.sdd Foil 29

Reliability
Safety
Confidentiality
Integrity
-

Fault Prevention

Fault Tolerance
— Fault Renoval

Fault Forecasting

Faults
Failures

e Systens Programming — Lecture 13.sdd Foil 30

