
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 1

Real-Time Systems Programming

Dependability Contd.

Summer-Semester 2002
Lecture 13

30 May 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 2

The 5-Minute Review Session

1) What are real-time entities/representatives/images?
What may cause them to differ?

2) What is a rule of thumb for selecting a sampling rate?
3) How can we compensate a sampling delay? How can

we compensate a sampling jitter?
4) What is temporal accuracy?
5) What is the difference between parametric and phase-

sensitive RT images?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 3

Overview

1) Failures
2) Errors
3) Faults
4) Fault Prevention vs. Fault Tolerance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 4

Where are we?

1) Failures
– Nature
– Perception
– Effect
– Oftenness
– Origins

2) Errors
3) Faults
4) Fault Prevention vs. Fault Tolerance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 5

Recall: Fault, Error, Failure

Failure (“Ausfall”):
Deviation of actual service from specified service
(external state)

Control surface on wing moves erroneously
Airbag does not ignite

Error (“Fehlzustand”):
Unintended (internal) system state

Short circuit (excessive current, low voltage)
Variable out of range

Fault (“Fehler”):
Cause of an error

Broken isolator, software bug
Specification fault

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 6

Classification of Failures

Failure

Nature

Value

Timing

Oftenness

Permanent

Transient

Perception

Consistent

Inconsistent

Effect

Benign

Malign

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 7

Failure Nature

Failure

Nature Perception Effect Oftenness

Value Domain

Constraint Failure
(Detectable)

Value Failure
(Possibly undetectable)

Timing Domain

Early

Late

Omission

Commission

Arbitrary failures:
Combinations of value and timing domain failures

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 8

Failure Perception

In system with more than one user:
Consistent failures:

Perceptions of the users are the same
Inconsistent failures:

Perceptions are different
Also referred to as two-faced failures, malicious
failures, or Byzantine failures

Failure

Nature Perception Effect Oftenness

ConsistentInconsistent

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 9

System Classification

Given: consistent failure perception
Fail silent: System produces either correct results
(both in value and time domains) or no results at all
Fail crash: Fail-silent system that stops operating
after the first failure
Fail stop: Fail-crash system that makes its failure
known to other systems
Fail (un-)controlled: System that fails in a(n) (un-)
controlled manner
Fail-never: System that always provides correct
services in both the timing and value domains

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 10

Failure Effect

The classification of a failure effect depends on the
characeristics of the controlled application
Safety-critical applications are those where a malign
failure can occur

Failure

Nature Perception Effect Oftenness

BenignMalign

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 11

Failure Oftenness

Single failure
Failure occurs only once within a given time interval

Permanent failure
System ceases to provide service until repair

Transient failure
System continues service

Intermittent failure
Frequently occurring transient failure

Failure

Nature Perception Effect Oftenness

PermanentTransient

Example of permanent failure:
Broken wire

Example of intermittent failure:
Heat-sensitive hardware device

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 12

Permanent Failures

A typical VLSI device failure rate develops according
to the “bathtub pattern”:

A relatively high failure rate for the first few hundred
hours of operation (burn-in)
After that, stabilization at about 10-100 FIT (= Failures per
109 hrs – MTTF of about 115 Kyrs)
At some point, an increased failure rate again (aging)

t

Failure
rate

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 13

Preventive Maintenance

Failure rate of a VLSI chip
Depends mainly on physical parameters (pins, packaging)
Not very sensitive to the number of transistors

Preventive maintenance
Exchange of components before they fail
Limits effects of aging

If there is no aging, then there is no point in
preventive maintenance!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 14

Transient Failures

Transient chip failure rate
Can be 10 – 100 000 x permanent failure rate
Depends on physical environment

Most common causes are
Electromagnetic interferences (EMI)
Power supply glitches
High-energy particles (e.g., α-particles)

Example from radar monitoring [Gebman et al. 1988]:
Malfunctions noticed every 6 flight hrs
Maintenance request every 31 hrs
Only every 3rd failure could be reproduced!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 15

Origins of Failure

Rule of thumb (JPL data):
1 major fault every 3 pages of requirements
1 major fault every 21 pages of code

Fault statistics for some NASA space projects:
Coding faults: 6% of overall faults (!!!)

Function faults: 71% (due to requirements/design problems)

Interface faults: 23% (due to poor comm. between teams)

Observation:
Most severe faults are introduced early but are detected
late! (often during system integration)

These statistics were kindly provided by Gerald Luettgen
(University of Sheffield)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 16

Origins of Failure

Results of one study on large information systems
(Tandem):

>40% of failures due to human operator faults
25% caused by software faults
Large contribution by environmental factors

Power outages
Fires, floods

Smallest contributor: (random) hardware faults
One of the lessons:

Need not only hw fault tolerance, but also sw fault
tolerance!

J. Gray, “Why do Computers Stop and What Can be done
About It?,” Proceedings of the 5th IEEE Symposium on
Reliability in Distributed Software and Database Systems, Los
Angeles, USA, p. 3-12, 1986

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 17

Where are we?

1) Failures
2) Errors

– Classification
3) Faults
4) Fault Prevention vs. Fault Tolerance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 18

Errors

Most controller failures can be traced to an incorrect
internal state – i.e., a wrong data element
Similarly to failures, we can classify errors as

Transient errors: exists only for short interval, disappears
again without explicit repair action
Permanent errors: require explicit repair

Fault-tolerant architecture
Every error confined to an error containment region
This avoids error propagation

Error detection interfaces
Protect boundaries of error containment regions

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 19

Transient Errors

Errors are predominantly transient
Typical, simple control cycle structure:

Read inputs (sensors)
Compute reaction
Write outputs (actuators)

Wrong input on one cycle does not affect next cycle
Typically, each cycle can release only a finite amount
of energy

Results in transient error tolerant design

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 20

Permanent Errors

Example: database
Maintains large state
Any introduced error is likely to be permanent – i.e.,
requires an explicit correction
Without corrections, data base erosion occurs

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 21

Where are we?

1) Failures
2) Errors
3) Faults

– Models
– Classification

4) Fault Prevention vs. Fault Tolerance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 22

Interaction Fault Models

First step to building fault-tolerant system:
Define a fault model

[Veríssimo and Rodrigues
2001]

Omissive Faults: A component does not perform
some interaction when specified to
Assertive Faults: A component does perform some
interaction when not specified to

Syntactic Faults: construction of interaction is
incorrect (e.g., Temp = “+ab”)
Semantic Faults: meaning conveyed by interaction
is incorrect (e.g., Temp = “-99”)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 23

Fault Classification

See [Laprie 1992] for more details

Fault

Nature

Chance

Intentional

Perception

Physical

Design

Boundaries

Internal

External

Origin

Development

Operation

Persistence

Transient

Permanent

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 24

Where are we?

1) Failures
2) Errors
3) Faults
4) Fault Prevention vs. Fault Tolerance

– Hardware fault avoidance
– Software fault avoidance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 25

Approaches to Achieving Reliable Systems

Fault prevention
Attempts to eliminate any possibility of faults creeping
into a system before it goes operational
Fault avoidance

Limit introduction of faults during system
construction

Fault removal
Find and remove the causes of errors

Fault tolerance
Enables system to continue functioning even in the
presence of faults

Both approaches attempt to produces systems which
have well-defined failure modes

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 26

Hardware Fault Avoidance

Use of the most reliable components within the
given cost and performance constraints
Use of thoroughly-refined techniques for
interconnection of components and assembly of
subsystems

Plugs and soldered connections are often the weakest
points

Packaging the hardware to screen out expected forms
of interference

E.g. EMI shielding, Single Event Upset (SEU) resistence
in avionics and space applications

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 27

Software Fault Avoidance

Software
Does not deteriorate (by itself) with use
Often much more complex than hw counterparts
Virtually impossible to design fault-free

Banana software approach
“Ripes at the customer”
Not untypical in consumer and business sw
With RT systems usually not an option

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 28

Software Fault Avoidance

SW can be improved by
Rigorous, if not formal, specification of requirements
Use of proven design methodologies
Use of languages with

data abstraction
modularity

Use of sw engineering environments to manage
complexity

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_13.sdd Foil 29

Summary

We distinguish between fault, error, and failure
Among the predominant causes are human operator
error and software faults
Hardware faults are less common causes
In simple control structures, transient input faults may
only lead to transient system failures

ime Systems Programming – Lecture_13.sdd Foil 30

Confidentiality

Reliability

Safety

Integrity

Maintainability

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Faults

Errors

Failures

es

ments

