
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 1

Real-Time Systems Programming

Fault Removal and Fault T

Summer-Semester 2002
Lecture 14

31 May 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 2

Overview

1) Fault removal
2) Fault Tolerance
3) HW fault tolerance
4) SW fault tolerance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 3

Where are we?

1) Fault removal
– Testing – and its limits!

2) Fault Tolerance
3) HW fault tolerance
4) SW fault tolerance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 4

Fault Removal

Not an alternative to fault avoidance, but an
augmentation
Fault removal: procedures for finding and removing
the causes of errors

Automated SW analyses – as a pre-compile pass
Semantic style checkers

E.g., the automated detection of non-deterministic
functional models, race conditions, etc.

Design reviews
Program verification
Code inspections
The classic: system testing, testing, ... and more testing

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 5

A Precaution on System Testing

System testing can never be exhaustive and remove
all potential faults
A test normally just shows the presence of faults, not
their absence
It is sometimes impossible to test under realistic
conditions
Most tests are done with the system in simulation
mode

Difficult to guarantee that the simulation is accurate

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 6

Failure of Fault Prevention Approach

In spite of all the testing and verification techniques,
hardware components will fail
Fault prevention approach unsuccessful when

Frequency or duration of repair times are unacceptable,
or
System inaccessible for maintenance and repair activities
(e.g., the crewless spacecraft Voyager)

A therefore sometimes required augmentation (not
an alternative!) to fault prevention is fault tolerance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 7

Where are we?

1) Fault removal
2) Fault Tolerance

– Levels of fault tolerance
– Redundancy
– Voting – and the consistent comparison problem

3) HW fault tolerance
4) SW fault tolerance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 8

Levels of Fault Tolerance

Full fault tolerance
System continues to operate in the presence of faults
For a limited period
No significant loss of functionality or performance

Graceful degradation (fail soft)
System continues to operate in the presence of faults
Accept partial degradation of functionality or
performance during the presence of the fault (until
recovery or repair)

Fail safe
System maintains its integrity
Accept a temporary halt in systems operation

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 9

Fault Tolerance Requirements

Required fault tolerance level depends on application
Most safety critical systems require full fault
tolerance
In practice, often settle for graceful degradation
Example: Air Traffic Control (ATC), with the levels:
1) Full functionality within required response times
2) Minimum functionality to maintain basic ATC
3) Emergency functionality to provide separation among

aircraft only
4) Adjacent facility backup, used in event of catastrophic

failure (e.g., earthquake)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 10

Redundancy

All fault-tolerant techniques rely on extra elements
introduced into the system to detect & recover from
faults
Redundant components: not required in perfect
system
Often called protective redundancy

Space redundancy
Time redundancy
Value redundancy

Aim:
Minimise redundancy while maximising reliability
Subject to cost and size constraints of the system

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 11

Redundancy – A WARNING

Added components increase the complexity of the
overall system

This itself can lead to less reliable systems
Inherent problems with redundancy

Redundancy aspects of a design are rarely exercised
Redundancy typically comes in when a system is already
in a stress situation
Difficult to test – can often be simulted at best

Redundancy can easily lower reliability !
Example: first launch of the space shuttle

Advice:
Separate fault-tolerant components from rest of system

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 12

Voting

1 out of 2 voting:
Handles single silent failure

2 out of 3 voting:
Handles single consistent failure

In general: m out of n
Given n results, m of them have to agree to be accepted

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 13

Exact vs. Inexact Voting

Exact voting:
Bit-by-bit comparison of the results
Can be used with exact results: Bools, strings, ints

Inexact voting:
Results are considered identical if they are within an
(application specific) interval
Required with inexact results: Floats, analog values

Most embedded RT systems have to use inexact
voting!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 14

Consistent Comparison Problem

T2

> Tth

yes
P2

no
> Pth

V2

T3

> Tth
no

P3

> Pth

V3

Inexact voting does not help if internal control flow of
redundant copies internally depends on inexact values
Example: process
control system that
bases decisions on
temperatures and
pressures
All redundant
controllers have valid
data, just below or
above the thresholds

T1

> Tth

yes
P1

> Pth

yes

V1
[Burns and Wellings 2001]

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 15

Where are we?

1) Fault removal
2) Fault Tolerance
3) HW fault tolerance
4) SW fault tolerance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 16

Hardware Fault Tolerance

Static redundancy
Redundancy inside a system to hide effects of faults
Example: Redundant flight control unit

Dynamic redundancy
Redundancy supplied inside a component which indicates
that the output is in error
Provides an error detection facility
Recovery must often be provided by another component
Examples:

Parity bits
Communications checksums (Cyclic Redundancy
Check – CRC) – may be error-correcting or not

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 17

HW Fault Tolerance – A WARNING

HW fault tolerance:
Classical means employed by designers of safety critical
applications

The (often implicit) assumption:
Faults are not common to redundant components
(common mode faults)
Faults are either transient or due to component
deterioration

However, with increased design complexity, hw
faults are becoming more likely to be design faults
Design faults are not eliminated by replication !

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 18

Degrees of Redundancy

The required degree of redundancy depends on
the type of fault to be tolerated
the number of faults to be tolerated

Let n be the degree of redundancy; to tolerate k faults,
we need

n = k +1 for fail-silent faults
n = 2k +1 for fail-consistent faults
n = 3k +1 for malicious (Byzantine) faults

Typical: n = 3, Triple Mode Redundancy (TMR)
Use of voting to derive end result

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 19

Where are we?

1) Fault removal
2) Fault Tolerance
3) HW fault tolerance
4) SW fault tolerance

– N-Version programming
– SW dynamic redundancy
– Forward and backward error recovery
– Recovery blocks

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 20

Software Fault Tolerance

Used for detecting design faults
Static SW fault tolerance:

N-Version programming
Dynamic SW fault tolerance:

Detection and Recovery
Recovery blocks: backward error recovery
Exceptions: forward error recovery

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 21

N-Version Programming

Independent generation of N (N > 2) functionally
equivalent programs

Use same initial specification
No interactions between groups

The programs execute concurrently
Use same inputs
Compare results by a driver process

A voting process produces the final result

 “When the formula is very complicated, it may be algebraically
arranged for computation in two or more distinct ways [...] If the
same constants are now employed with each set, and if under these
circumstances the results agree, we may then be quite secure of
the acuracy of them all.”

Babbage, 1837

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 22

Assumptions of N-Version Programming

A program can be specified in a manner that is
complete
consistent
unambiguous

Faults in different versions are not correlated
Both assumptions are not inherently valid !

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 23

N-version programming depends on ...

Quality of the initial specification
Software faults are likely to stem from an inadequate
specification
A specification error will manifest itself in all N versions
of the implementation

Level of abstraction of the initial specification
Too high: unambiguity may result
Too low: design is too constrained

The budget
Can we afford a 3x increase in sw development costs?
Would a more reliable system be produced if the
resources potentially available for constructing an N-
versions were instead used to produce a single version?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 24

Software Dynamic Redundancy

Four phases:
Error detection
Damage confinement and assessment

To what extent has the system been corrupted?
The delay between a fault occurring and the detection of
the error could allow fault propagation

Error recovery
Transformation of the corrupted system into a state from
which it can continue its normal operation
Perhaps with degraded functionality

Fault treatment and continued service
An error is a symptom of a fault; although damage
repaired, the fault may still exist

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 25

Error Detection

Environmental detection
Hardware: e.g. illegal instruction
OS/RTS: null pointer, array index out of bounds

Application detection
Replication checks
Timing checks
Reversal checks

If i/o-function is isomorphic
Coding checks

E.g. checksums
Reasonableness checks

Structure
Values – static (absolute) or dynamic (relative)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 26

Damage Confinement and Assessment

Damage assessment is closely related to damage
confinement techniques used
Damage confinement is concerned with structuring
the system so as to minimise the damage caused by a
faulty component (also known as firewalling)
Modular decomposition

Provides static damage confinement
Allows data to flow through well-define pathways

Atomic actions
Provides dynamic damage confinement
Move the system from one consistent state to another

Other protection mechanisms – e.g., access
permissions

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 27

Error Recovery

Probably the most important phase of any fault-
tolerance technique
Forward error recovery (FER)

Continues from an erroneous state by making selective
corrections to the system state

Backward error recovery (BER)
Restores system to a safe state previous to the one where
the error occurred

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 28

Forward Error Recovery

FER includes making safe the controlled
environment which may be hazardous or damaged
because of the failure
Is system specific and depends on accurate
predictions of the location and cause of errors (i.e,
damage assessment)
Examples:

Redundant pointers in data structures
Use of self-correcting codes such as Hamming Codes

There may be a trade off between error detection and
error correction capabilities

Example: CRCs

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 29

Backward Error Recovery

BER restores the system to a previous safe state
Static BER

Executes the same program again
Handles transient faults
Not application specific

Dynamic BER
Executes an alternative section of the program
Handle permanent faults
This has the same functionality but uses a different
algorithm and therefore (hopefully) no fault
Compare with N-Version Programming – also regarding
the limitations of this approach

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 30

Backward Error Recovery

Recovery point: Point to which a process is restored
Checkpointing: Establishing a recovery point
Advantage:

Erroneous state is cleared and it does not rely on finding
the location or cause of the fault

BER can, therefore, be used to recover from
unanticipated faults including design errors, if an
alternative code is executed
Disadvantage:

Cannot undo errors in the environment!
Incremental checkpointing can reduce overhead

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 31

The Domino Effect

With concurrent processes that interact with each
other, BER is more complex
Recovery points insufficient – must establish
recovery lines

[Veríssimo and Rodrigues 2001]

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 32

Fault Treatment and Continued Service

Error recovery returned the system to an error-free
state; however, the error may recur
The final phase of F.T. is to eradicate the fault from
the system
The automatic treatment of faults is difficult and
system specific
Some systems assume all faults are transient; others
that error recovery techniques can cope with
recurring faults

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 33

Fault Treatment and Continued Service

 Fault treatment can be divided into 2 stages:
 Fault location
 System repair

 Error detection techniques can help to trace the fault
to a component.

 Hardware:
 Component replacement

 Software fault:
 Corrected version of the code

 In non-stop applications it will be necessary to
modify the program while it is executing!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 34

The Recovery Block Approach to FT

Recovery blocks are a language support for BER
Block entrance: automatic recovery point
Block exit: an acceptance test

Tests that the system is in an acceptable state after the
block’s execution (primary module)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 35

Possible Recovery Block Syntax

Recovery blocks can be nested
If all alternatives in a nested recovery block fail the
acceptance test:

Restore outer level recovery point
Execute alternative module

ensure <acceptance test>
by

<primary module>
else by

<alternative module>
else by

<alternative module>
...

else by
<alternative module>

else error

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 36

Example:Differential Equation Solver

Explicit Kutta Method fast
... but inaccurate when equations are stiff

Implicit Kutta Method more expensive
... but can deal with stiff equations

The above will cope with all equations
It will also potentially tolerate design errors in
the Explicit Kutta Method if the acceptance test
is detailed enough

ensure Rounding_err_has_acceptable_tolerance
by

Explicit Kutta Method
else by

Implicit Kutta Method
else error

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 37

The Acceptance Test

The acceptance test provides the error detection
mechanism which enables the redundancy in the
system to be exploited
The design of the acceptance test is crucial to the
efficacy of the RB scheme
There is a trade-off between

Providing comprehensive acceptance tests and
Keeping overhead to a minimum, so that fault-free
execution is not affected

Note that the term used is acceptance, not
correctness

This allows a component to provide a degraded service

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 38

N-Version Programming vs Recovery Blocks

Static (NV) versus dynamic redundancy (RB)
Design overheads

NV requires alternative algorithms, may use alternatives
for RB as well
NV requires voter, RB requires acceptance test

Runtime overheads
NV requires N x resources
RB requires establishing recovery points

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 39

Diversity of design
Both susceptible to errors in requirements

Error detection
Vote comparison (NV) versus acceptance test (RB)
RB can eliminate problems with inexact voting or
inconsistent comparisons

Atomicity
NV vote before it outputs to the environment
RB must be structures to only output following the
passing of an acceptance test

Note:
Can also use NV and RB complementarily

N-Version Programming vs Recovery Blocks

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 40

Summary I

Fault prevention consists of fault avoidance and fault
removal
Fault tolerance enables system to continue
functioning even in the presence of faults
System testing is the (more or less) systematic attempt
to find faults in a system by observing its behavior in
various scenarios

Caution: Testing can only prove the presence of faults, not
their absence!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 41

Summary II

Redundancy adds components beyond mere
functionality

Caution 1: Redundancy adds complexity to a design
Caution 2: Replicating design faults does not eliminate
them!

Voting is the process to merge the outputs of
redundant components
Depending on the types of values voted on, voting
may be exact or inexact

Caution: Inexact voting does not help if internal control
flow depends on inexact inputs
The consistent comparison problem may introduce
additional complexity

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 42

Summary III

N-version programming: independent generation of
functionally equivalent programs from the same
initial specification
Assumes that a program can be completely,
consistently and unambiguously specified, and that
programs which have been developed independently
will fail independently
Design diversity does not eliminate specification
faults !
Dynamic redundancy: error detection, damage
confinement and assessment, error recovery, and
fault treatment and continued service

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 43

Summary IV

With backward error recovery, it is necessary for
communicating processes to reach consistent
recovery points to avoid the domino effect
For sequential systems, the recovery block is an
appropriate language concept for BER

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 44

To Go Further

Dependability:
[Kopetz 1997], Chapter 6

[Burns and Wellings 2001], Chapter 5

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_14.sdd Foil 45

Problem Set 7 – Due: (Mon) 10 June 2002

Optimize the robot you built last week, according to the following design objectives:
1. T becomes minimal
2. The minimal thickness L

min
 of the crossed line for safe detection becomes minimal

3. The braking distance B – measured from the end of the crossed line to the center of the
light sensor – becomes minimal

4. The measurement error of D becomes minimal
5. The measurement error of L becomes minimal
a) Documentation (overview of approach and assumptions, commented source code)

(3 pts)
b) Functional robot (2 pts)
c) Discussion, for each of the 5 design objectives: (5x2 Pts)

- How well (quantitatively) your design fulfills the objectives
- What are the influencing factors for the fulfillment of the objectives
- What tradeoffs there are with the other design objectives

Enjoy!

