
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 1

Real-Time Systems Programming

Exceptions

Summer-Semester 2002
Lecture 15

6 June 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 2

The 5-Minute Review Session

1) When is preventive maintenance useful?
2) How can we classify failures?
3) What is a principal limitation of using testing for

system validation?
4) What is the consistent comparison problem?
5) What are prerequisites for a successful application of

N-version programming?
6) What is backward error recovery? What is the domino

effect?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 3

Overview

1) Example of a Fail-Safe System
2) Exceptions

– Exception handling in older real-time languages
– Modern exception handling
– Resumption vs. termination

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 4

Example of a Fail-Safe System: VOTRICS

z Train Signalling System developed by Alcatel
z An industrial example of applying design diversity in a

safety-critical RT environment
z Objective of train signalling system:

¾ Collect data about the state of the tracks in a train station –
current position and movements of trains, position of points

¾ Set signals and shift points such that trains can move safely
through the station according to a given time table

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 5

VOTRICS cont.

z VOTRICS is partitioned into two independent
subsystems

z First system:
¾ Accepts commands from operators
¾ Collects data from tracks
¾ Calculates intended positions of signals and points
¾ Uses a standard programming paradigm
¾ Uses a TMR architecture to tolerate single HW fault

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 6

VOTRICS cont.

z The second system, the “safety bag”:
¾ Monitors safety of the state of the station
¾ Has access to RT data base and intended outputs of 1st

system
¾ Dynamically evaluates safety predicates derived from the

“rule book” of the railway authority
¾ Based on expert-system technology
¾ Also implemented on TMR HW architecture

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 7

VOTRICS cont.

z The two systems exhibit a substantial degree of
independence

z Used different specifications as starting point
¾ Operational requirements vs. safety rules

z Used different implementation approach
¾ Standard programming vs. expert system

z System has been operational in different railway
stations for a number of years, no unsafe state has
been detected

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 8

An Ideal Fault-Tolerant Component
Interface

Exception
Failure

Exception

Interface
Exception

Failure
Exception

Service
Request

Normal
Response

Service
Request

Normal
Response

Normal Activity Exception Handlers

Return to
Normal
Service

Internal
Exception

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 9

Dynamic Redundancy and Exceptions

z Exception: can be defined as the occurrence of an
error

z Raising (or signalling or throwing) the exception:
Bringing an exception to the attention of the invoker
of the operation which caused the exception

z Handling (or catching) the exception: The invoker's
response

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 10

Exceptions for Error Recovery

z Exception handling is a forward error recovery
mechanism
¾ No roll back to a previous state
¾ Instead control is passed to the handler so that recovery

procedures can be initiated
z However, the exception handling facility can be used

to provide backward error recovery
¾ Can implement recovery blocks using exceptions

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 11

Exceptions

Exception handling can be used to:
z cope with abnormal conditions arising in the

environment
¾ The original purpose of exceptions

z enable program design faults to be tolerated
z provide a general-purpose error-detection and

recovery facility

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 12

Requirements for Exception Handling

z R1 (Simplicity): Should be simple to understand and
use

z R2(Unobtrusiveness): Exception handling code
should not obscure understanding of the software
¾ R1 and R2 crucial for designing reliable systems!

z R3 (Efficiency): Run-time overheads should be
incurred only when handling an exception
¾ This may be relaxed, e.g. if speed of recovery is critical

z R4 (Uniformity): Uniform treatment of exceptions
detected both by the environment and by the
program

z R5 (Recovery): It should allow recovery actions

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 13

Traditional Exception Handling

z In the following, we will discuss
¾ Unusal returns (the C classic)
¾ Forced branches (Assembly)
¾ The non-local goto
¾ Procedure variables

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 14

Exceptional Returns

z The classic: encoding exceptions as unusual return
value or error return

z Example: C/POSIX
if (function(params) == AN_ERROR) {

– error handling code
} else {

-- normal return code
};

z R1 (Simplicity): ☺
z R2 (Unobtrusiveness):/
z R3 (Efficiency): .
z R4 (Uniformity): /
z R5 (Recovery): ☺

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 15

Forced Branch
z Typical approach in assembly languages
z Skip return:

¾ Instruction following the subroutine call is skipped to
indicate the presence/absence of an error

¾ Return address (program counter) is incremented by
the length of a simple jump instruction

¾ Can permit more than one exceptional return by
accordingly manipulating the PC

jsr pc, PRINT_CHAR
jmp IO_ERROR
jmp

DEVICE_NOT_ENABLED
normal processing

z R1 (Simplicity): .
z R2 (Unobtrusiveness): .
z R3 (Efficiency): ☺
z R4 (Uniformity): /
z R5 (Recovery): ☺

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 16

Non-Local Goto

z A high-level language version of a forced branch
which uses label variables

z Example: non-local goto of RTL/2 [Barnes 1976]
proc main();

...

restart:

...

erl := restart;

...

Caller();

...

end proc;

svc data rrerr

label erl; % a label variable %

enddata

proc WhereErrorIsDetected();

... goto erl; ...

endproc;

proc Caller();

... WhereErrorIsDetected(); ...

endproc;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 17

Non-Local Goto
z Control flow is broken

¾ Is therefore best used for unrecoverable errors
z This type of goto is more than just a jump

¾ Implies an abnormal return from a procedure
z The stack must be unwound

¾ Until the environment restored is that of the procedure
containing the declaration of the label

z R1 (Simplicity): /
z R2 (Unobtrusiveness): /
z R3 (Efficiency): ☺
z R4 (Uniformity): ☺
z R5 (Recovery): ☺

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 18

Procedure Variables
z An error procedure variable allows to return control

to the point where the error originated
¾ Can be used for recoverable errors

z Example in RTL/2:
svc data rrerr;

label erl;

proc(int) erp;

enddata;

proc recover(int);
...

endproc;

proc WhereErrorIsDetected();
...
if recoverable then erp(n)
else goto erl end;

...
endproc;

proc Caller();
...
WhereErrorIsDetected();
...

endproc;

proc main();
...
erl := fail;
erp := recover;
...
Caller();
...

fail:
...

end proc

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 19

Procedure Variables – Assessment
z Again, programs can become very difficult to

understand
z R1 (Simplicity): /
z R2 (Unobtrusiveness): /
z R3 (Efficiency): ☺
z R4 (Uniformity): ☺
z R5 (Recovery): ☺

z The modern approach:
¾ Introduce exception-handling facilities directly into the

language – this allows better structuring

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 20

Exceptions and their Representation

z Error detection can be classified according to who
detects the error
¾ Environmental error detection (divide by zero)
¾ Application error detection (assertion failure)

z Error detection can also be classified according to
when it is detected:
¾ A synchronous exception is raised as an immediate result

of a process attempting an inappropriate operation
¾ An asynchronous exception is raised some time after the

operation causing the error
� may be raised in the process which executed the

operation or in another process

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 21

Classes of Exceptions I

According to when exceptions are raised by whom, we
can distinguish four types of exceptions:
1. Detected by the environment and raised

synchronously
¾ Array bounds error, divide by zero

2. Detected by the application and raised
synchronously
¾ The failure of a program-defined assertion check

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 22

Classes of Exceptions II

3. Detected by the environment and raised
asynchronously
¾ An exception raised due to the failure of some health

monitoring mechanism
4. Detected by the application and raised

asynchronously
¾ one process may recognise that an error condition has

occurred earlier in another process
z Asynchronous exceptions are also called

asynchronous notifications or signals
¾ Mostly an issue with concurrent programming (Ö later)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 23

Synchronous Exceptions

There are two models for the declaration of
synchronous exceptions:
z A constant name

¾ needs to be explicitly declared
¾ Example: Ada

z An object of a particular type
¾ may or may not need to be explicitly declared
¾ Example: C++, Java

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 24

Exception Declarations in Ada

z The exceptions that can be raised by the Ada run
time system are declared in package Standard

z This package is visible to all Ada programs
package Standard is

...
Constraint_Error : exception;
Program_Error : exception;
Storage_Error : exception;
Tasking_Error : exception;
...

end Standard;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 25

The Domain of an Exception Handler

z Within a program, there may be several handlers for
a particular exception

z Associated with each handler is a domain:
¾ The region of computation during which, if an exception

occurs, the handler will be activated
z The accuracy or granularity with which a domain

can be specified will determine how precisely the
source of the exception can be located

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 26

Exception Domains in Ada

z In a block structured language, like Ada, the domain
is normally the block

z Procedures, functions, accept statements etc. can also
act as domains

declare

subtype Temperature is Integer range 0 .. 100;

begin

-- read temperature sensor

exception

-- handler for Constraint_Error

end;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 27

Exception Domains in Java

z Not all blocks can have exception handlers
z The domain of an exception handler must be

explicitly indicated and the block is considered to be
guarded

z Java does this with a try-block
try {

// statements which may raise exceptions
}

catch (ExceptionType e) {
// handler for e

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 28

Granularity of Exception Handling Domain

declare

subtype Temperature is Integer range 0 .. 100;

subtype Pressure is Integer range 0 .. 50;

subtype Flow is Integer range 0 .. 200;

begin

-- read temperature sensor and calculate its value

-- read pressure sensor and calculate its value

-- read flow sensor and calculate its value

-- adjust temperature, pressure and flow

exception

-- handler for Constraint_Error

end;

z Which calculation caused the exception ?
z Arithmetic overflow etc. ⇒ further difficulties

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 29

Solution 1: Decrease Block Size

z This is fairly tedious !

declare
...

begin
begin

-- read temperature sensor and calculate its value
exception

-- handler for Constraint_Error for temperature
end;
begin

-- read pressure sensor and calculate its value
exception

-- handler for Constraint_Error for pressure
end;
begin

-- read flow sensor and calculate its value
exception

-- handler for Constraint_Error for flow
end;
-- adjust temperature, pressure and flow

exception
-- handler for other possible exceptions

end;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 30

Sol. 2: Handle Exceptions at Statement Level

z CHILL has such a facility [CCITT 1980]
z R2 (Unobtrusiveness): /

-- NOT VALID Ada

declare

...

begin

Read_Temperature_Sensor;

exception -- handler for Constraint_Error;

Read_Pressure_Sensor;

exception -- handler for Constraint_Error;

Read_Flow_Sensor;

exception -- handler for Constraint_Error;

-- adjust temperature, pressure and flow

end;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 31

Solution 3: Parametrized Exceptions

z Allow parameters to be passed with the exceptions
z Java:

¾ Exception is an object
¾ Can contain arbitrary information

z Ada:
¾ Provides a predefined procedure
Exception_Information

¾ This returns implementation-defined details on the
occurrence of the exception

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 32

Exception Handling Resolution

z Question: Which handler handles a raised
exception?

z The answer is easy if there exists a handler for the
exception that is immediately associated with the
block or procedure where the exception was raised

z However, this may not always be the case
¾ Example: an exception raised in a procedure as a result

of a failed assertion involving the parameters passed to
the procedure

z In these cases, the answer is not so obvious

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 33

Static Exception Handling Association

z The compiler/linker tries to establish for each
exception the corresponding handler

z If no such handler can be found, report this as an
error at compile time

z CHILL:
¾ Requires that a procedure specifies which exceptions it

may raise (that is, not handle locally)
¾ The compiler can then check the calling context for an

appropriate handler
z Java and C++:

¾ Allows a function to define which exceptions it can raise
¾ however, does not require a handler to be available in the

calling context

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 34

Dynamic Association/Exception Propagation

z Look for handlers up the chain of invokers; this is
called propagating the exception

z The approach taken by Ada, Java, C++, Modula 2/3
z A problem occurs where exceptions have scope

¾ An exception may be propagated outside its scope,
thereby making it impossible for a handler to be found

z Most languages provide a catch all exception
handler

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 35

Unhandled Exceptions

z An unhandled exception causes a sequential program
to be aborted

z If the program contains more than one process and a
particular process does not handle an exception it has
raised, then usually that process is aborted

z It is not clear whether the exception should be
propagated to the parent process – see later

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 36

Resumption vs. Termination Model

z Question: Should the invoker of an exception
continue its execution after the exception has been
handled ?
¾ Yes ⇒ Resumption or notify model
¾ No ⇒ Termination or escape model
¾ Perhaps ⇒ Hybrid model

� The exception handler decides

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 37

The Resumption Model

Hq

Hr

P

Q

R

1. P invokes Q

2. Q invokes R
3. R raises r

4. Hr raises q

5. Hq
resumes Hr

6. Hr
resumes R

z Can view handler as an implicit procedure which is
called when the exception is raised

z Example: procedures P, Q and R, handlers Hr and Hq

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 38

The Resumption Model

z The exception handler may be able to take care of
the problem that caused the exception

z Resumption model may be advantageous when the
exception has been raised asynchronously (Ö later)
and has little to do with the current process execution

z A Difficulty: the repair of errors raised by the RTS
z Example: arithmetic overflow in the middle of a

sequence of complex expressions
¾ Registers contain partial evaluations
¾ Calling the handler overwrites these registers

z Pearl & Mesa support resumption and termination

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 39

Retry Resumption

z The strict resumption model is not easy to implement
z Alternative: Retry model

¾ Re-execution of the block associated with the exception
handler

¾ Exception handler sets flag to indicate that error has
occurred

¾ Example: Eiffel
z Note that local variables of the block must not be re-

initialised on a retry

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 40

The Termination Model

z In the termination model, when an exception has
been raised and the handler has been called:
¾ The block or procedure containing the handler is

terminated
¾ Control does not return to where the exception occurred
¾ Control is passed to the caller (procedure domain) or to

the first statement following the block (block domain)
z An invoked procedure, therefore, may terminate in

one of a number of conditions:
¾ the normal condition, or
¾ any of the possible exception conditions

z Ada and Java support the termination model

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 41

declare
subtype Temperature is Integer range 0 .. 100;

begin
...
begin

-- read temperature sensor and calculate its value,
-- may result in an exception being raised

exception
-- handler for Constraint_Error for temperature,
-- once handled this block terminates

end;
-- code here executed when block exits normally
-- or when an exception has been raised and handled.

exception
-- handler for other possible exceptions

end;

Block Termination

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 42

Procedure Termination
Procedure P

Procedure Q
Procedure RP invokes Q

Q invokes R

Exception
r raisedHandler sought

Handler
for r

Procedure terminates

Control flow changes likely
to be more drastic than with

block termination !

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 43

The Hybrid Model

z The handler decides if the error is recoverable
¾ Yes: the handler can return a value and the semantics are

the same as in the resumption model
¾ No: invoker is terminated

z Example: Signal mechanisms of Mesa
z Eiffel supports the restricted retry model

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 44

Exception Handling and Operating Systems

z SW will often (not always) run on top of an OS
z The OS will detect certain synchronous error

conditions
¾ Memory violation, illegal instruction, etc.

z This will usually terminate the process; however,
many systems allow error recovery

z Example: signal mechanism in POSIX
¾ Allows handlers to be called when exceptions are

detected
¾ Once the signal is handled, the process is resumed at the

point where it was “interrupted” (resumption model)
z If a language supports the termination model, the run-

time support system (RTSS) must catch the error and
manipulate the program state accordingly

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 45

Summary I

An exception handling model has to specify:
z How are exception represented ?

¾ May or may not be explicitly represented in a language
z What is the domain of an exception handler ?

¾ What is the region of computation during which, if an
exception occurs, the handler will be activated ?

z What if there is no exception handler in the
enclosing domain ?
¾ An exception can be propagated to the next outer level

enclosing domain –
¾ or it can be considered to be a programmer error

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_15.sdd Foil 46

Summary II

z How to proceed after an exception has been
handled ?
¾ Resumption model: the invoker of the exception is

resumed at the statement after the one at which the
exception was invoked

¾ Termination model: the block or procedure containing
the handler is terminated, and control is passed to the
calling block or procedure.

¾ Hybrid model: the handler may choose whether to
resume or to terminate

z Can parameters be passed to the handler ?
z If an OS is used, the OS may also use exceptions to

communicate error conditions to the application

