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The 5-Minute Review Session

1) When is preventive maintenance useful?
2) How can we classify failures?
3) What is a principal limitation of using testing for 

system validation?
4) What is the consistent comparison problem?
5) What are prerequisites for a successful application of 

N-version programming?
6) What is backward error recovery? What is the domino 

effect?
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Overview

1) Example of a Fail-Safe System
2) Exceptions

– Exception handling in older real-time languages
– Modern exception handling
– Resumption vs. termination
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Example of a Fail-Safe System: VOTRICS 

z Train Signalling System developed by Alcatel
z An industrial example of applying design diversity in a 

safety-critical RT environment
z Objective of train signalling system:

¾ Collect data about the state of the tracks in a train station – 
current position and movements of trains, position of points

¾ Set signals and shift points such that trains can move safely 
through the station according to a given time table
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VOTRICS cont.

z VOTRICS is partitioned into two independent 
subsystems

z First system:
¾ Accepts commands from operators
¾ Collects data from tracks
¾ Calculates intended positions of signals and points
¾ Uses a standard programming paradigm
¾ Uses a TMR architecture to tolerate single HW fault
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VOTRICS cont.

z The second system, the “safety bag”:
¾ Monitors safety of the state of the station
¾ Has access to RT data base and intended outputs of 1st 

system
¾ Dynamically evaluates safety predicates derived from the 

“rule book” of the railway authority
¾ Based on expert-system technology
¾ Also implemented on TMR HW architecture
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VOTRICS cont.

z The two systems exhibit a substantial degree of 
independence

z Used different specifications as starting point
¾ Operational requirements vs. safety rules

z Used different implementation approach
¾ Standard programming vs. expert system

z System has been operational in different railway 
stations for a number of years, no unsafe state has 
been detected
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Dynamic Redundancy and Exceptions

z Exception: can be defined as the occurrence of an 
error

z Raising (or signalling or throwing) the exception: 
Bringing an exception to the attention of the invoker 
of the operation which caused the exception

z Handling (or catching) the exception: The invoker's 
response
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Exceptions for Error Recovery

z Exception handling is a forward error recovery 
mechanism
¾ No roll back to a previous state
¾ Instead control is passed to the handler so that recovery 

procedures can be initiated
z However, the exception handling facility can be used 

to provide backward error recovery
¾ Can implement recovery blocks using exceptions
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Exceptions

Exception handling can be used to:
z cope with abnormal conditions arising in the 

environment
¾ The original purpose of exceptions

z enable program design faults to be tolerated
z provide a general-purpose error-detection and 

recovery facility
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Requirements for Exception Handling

z R1 (Simplicity): Should be simple to understand and 
use

z R2(Unobtrusiveness): Exception handling code 
should not obscure understanding of the software
¾ R1 and R2 crucial for designing reliable systems!

z R3 (Efficiency): Run-time overheads should be 
incurred only when handling an exception
¾ This may be relaxed, e.g. if speed of recovery is critical

z R4 (Uniformity): Uniform treatment of exceptions 
detected both by the environment and by the 
program

z R5 (Recovery): It should allow recovery actions
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Traditional Exception Handling

z In the following, we will discuss
¾ Unusal returns (the C classic)
¾ Forced branches (Assembly)
¾ The non-local goto
¾ Procedure variables
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Exceptional Returns

z The classic: encoding exceptions as unusual return 
value or error return

z Example: C/POSIX
if (function(params) == AN_ERROR) {

– error handling code
} else {

-- normal return code
};

z R1 (Simplicity): ☺
z R2 (Unobtrusiveness):/
z R3 (Efficiency): .
z R4 (Uniformity): /
z R5 (Recovery): ☺
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Forced Branch 
z Typical approach in assembly languages 
z Skip return:

¾ Instruction following the subroutine call is skipped to 
indicate the presence/absence of an error

¾ Return address (program counter) is incremented by 
the length of a simple jump instruction 

¾ Can permit more than one exceptional return by 
accordingly manipulating the PC

jsr pc, PRINT_CHAR
jmp IO_ERROR
jmp

DEVICE_NOT_ENABLED
# normal processing

z R1 (Simplicity): .
z R2 (Unobtrusiveness): .
z R3 (Efficiency): ☺
z R4 (Uniformity): /
z R5 (Recovery): ☺
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Non-Local Goto 

z A high-level language version of a forced branch 
which uses label variables

z Example: non-local goto of RTL/2 [Barnes 1976]
proc main();

...

restart:

...

erl := restart;

...

Caller();

...

end proc;

svc data rrerr

label erl; % a label variable %

enddata

proc WhereErrorIsDetected();

... goto erl; ...

endproc;

proc Caller();

... WhereErrorIsDetected(); ...

endproc;
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Non-Local Goto
z Control flow is broken

¾ Is therefore best used for unrecoverable errors
z This type of goto is more than just a jump

¾ Implies an abnormal return from a procedure
z The stack must be unwound

¾ Until the environment restored is that of the procedure 
containing the declaration of the label

z R1 (Simplicity): /
z R2 (Unobtrusiveness): /
z R3 (Efficiency): ☺
z R4 (Uniformity): ☺
z R5 (Recovery): ☺
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Procedure Variables
z An error procedure variable allows to return control 

to the point where the error originated
¾ Can be used for recoverable errors

z Example in RTL/2:
svc data rrerr;

label erl;

proc(int) erp;

enddata;

proc recover(int);
...

endproc;

proc WhereErrorIsDetected();
...
if recoverable then erp(n)
else goto erl end;

...
endproc;

proc Caller();
...
WhereErrorIsDetected();
...

endproc;

proc main();
...
erl := fail;
erp := recover;
...
Caller();
...

fail:
...

end proc
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Procedure Variables – Assessment
z Again, programs can become very difficult to 

understand
z R1 (Simplicity): /
z R2 (Unobtrusiveness): /
z R3 (Efficiency): ☺
z R4 (Uniformity): ☺
z R5 (Recovery): ☺

z The modern approach:
¾ Introduce exception-handling facilities directly into the 

language – this allows better structuring
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Exceptions and their Representation

z Error detection can be classified according to who 
detects the error
¾ Environmental error detection (divide by zero)
¾ Application error detection (assertion failure)

z Error detection can also be classified according to 
when it is detected:
¾ A synchronous exception is raised as an immediate result 

of a process attempting an inappropriate operation
¾ An asynchronous exception is raised some time after the 

operation causing the error
� may be raised in the process which executed the 

operation or in another process
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Classes of Exceptions I

According to when exceptions are raised by whom, we 
can distinguish four types of exceptions:
1. Detected by the environment and raised 

synchronously
¾ Array bounds error, divide by zero

2. Detected by the application and raised 
synchronously
¾ The failure of a program-defined assertion check
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Classes of Exceptions II

3. Detected by the environment and raised 
asynchronously
¾ An exception raised due to the failure of some health 

monitoring mechanism
4. Detected by the application and raised 

asynchronously
¾ one process may recognise that an error condition has 

occurred earlier in another process
z Asynchronous exceptions are also called 

asynchronous notifications or signals
¾ Mostly an issue with concurrent programming (Ö later)
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Synchronous Exceptions

There are two models for the declaration of 
synchronous exceptions:
z A constant name 

¾ needs to be explicitly declared
¾ Example: Ada

z An object of a particular type
¾ may or may not need to be explicitly declared
¾ Example: C++, Java
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Exception Declarations in Ada

z The exceptions that can be raised by the Ada run 
time system are declared in package Standard

z This package is visible to all Ada programs
package Standard is

...
Constraint_Error : exception;
Program_Error : exception;
Storage_Error : exception;
Tasking_Error : exception;
...

end Standard;
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The Domain of an Exception Handler

z Within a program, there may be several handlers for 
a particular exception

z Associated with each handler is a domain:
¾ The region of computation during which, if an exception 

occurs, the handler will be activated
z The accuracy or granularity with which a domain 

can be specified will determine how precisely the 
source of the exception can be located
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Exception Domains in Ada

z In a block structured language, like Ada, the domain 
is normally the block

z Procedures, functions, accept statements etc. can also 
act as domains

declare

subtype Temperature is Integer range 0 .. 100;

begin

-- read temperature sensor

exception

-- handler for Constraint_Error

end;
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Exception Domains in Java

z Not all blocks can have exception handlers
z The domain of an exception handler must be 

explicitly indicated and the block is considered to be 
guarded

z Java does this with a try-block 
try {

// statements which may raise exceptions
}

catch (ExceptionType e) {
// handler for e

}
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Granularity of Exception Handling Domain

declare

subtype Temperature is Integer range 0 .. 100;

subtype Pressure is Integer range 0 .. 50;

subtype Flow is Integer range 0 .. 200;

begin

-- read temperature sensor and calculate its value

-- read pressure sensor and calculate its value

-- read flow sensor and calculate its value

-- adjust temperature, pressure and flow

exception

-- handler for Constraint_Error

end;

z Which calculation caused the exception ?
z Arithmetic overflow etc. ⇒ further difficulties
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Solution 1: Decrease Block Size

z This is fairly tedious !

declare
...

begin
begin

-- read temperature sensor and calculate its value
exception

-- handler for Constraint_Error for temperature
end;
begin

-- read pressure sensor and calculate its value
exception

-- handler for Constraint_Error for pressure
end;
begin

-- read flow sensor and calculate its value
exception

-- handler for Constraint_Error for flow
end;
-- adjust temperature, pressure and flow

exception
-- handler for other possible exceptions

end;
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Sol. 2: Handle Exceptions at Statement Level

z CHILL has such a facility [CCITT 1980]
z R2 (Unobtrusiveness): /

-- NOT VALID Ada

declare

...

begin

Read_Temperature_Sensor;

exception -- handler for Constraint_Error;

Read_Pressure_Sensor;

exception -- handler for Constraint_Error;

Read_Flow_Sensor;

exception -- handler for Constraint_Error;

-- adjust temperature, pressure and flow

end;
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Solution 3: Parametrized Exceptions

z Allow parameters to be passed with the exceptions 
z Java:

¾ Exception is an object
¾ Can contain arbitrary information

z Ada:
¾ Provides a predefined procedure 
Exception_Information

¾ This returns implementation-defined details on the 
occurrence of the exception
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Exception Handling Resolution

z Question: Which handler handles a raised 
exception?

z The answer is easy if there exists a handler for the 
exception that is immediately associated with the 
block or procedure where the exception was raised

z However, this may not always be the case
¾ Example: an exception raised in a procedure as a result 

of a failed assertion involving the parameters passed to 
the procedure

z In these cases, the answer is not so obvious
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Static Exception Handling Association

z The compiler/linker tries to establish for each 
exception the corresponding handler 

z If no such handler can be found, report this as an 
error at compile time

z CHILL:
¾ Requires that a procedure specifies which exceptions it 

may raise (that is, not handle locally)
¾ The compiler can then check the calling context for an 

appropriate handler
z Java and C++:

¾ Allows a function to define which exceptions it can raise
¾ however, does not require a handler to be available in the 

calling context
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Dynamic Association/Exception Propagation

z Look for handlers up the chain of invokers; this is 
called propagating the exception

z The approach taken by Ada, Java, C++, Modula 2/3
z A problem occurs where exceptions have scope

¾ An exception may be propagated outside its scope, 
thereby making it impossible for a handler to be found

z Most languages provide a catch all exception 
handler
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Unhandled Exceptions

z An unhandled exception causes a sequential program 
to be aborted

z If the program contains more than one process and a 
particular process does not handle an exception it has 
raised, then usually that process is aborted

z It is not clear whether the exception should be 
propagated to the parent process – see later
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Resumption vs. Termination Model

z Question: Should the invoker of an exception 
continue its execution after the exception has been 
handled ?
¾ Yes ⇒ Resumption or notify model
¾ No ⇒ Termination or escape model
¾ Perhaps  ⇒ Hybrid model

� The exception handler decides
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The Resumption Model

Hq

Hr

P

Q

R

1. P invokes Q

2. Q invokes R
3. R raises r

4. Hr raises q

5. Hq 
resumes Hr

6. Hr 
resumes R

z Can view handler as an implicit procedure which is 
called when the exception is raised

z Example: procedures P, Q and R, handlers Hr and Hq
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The Resumption Model

z The exception handler may be able to take care of 
the problem that caused the exception

z Resumption model may be advantageous when the 
exception has been raised asynchronously (Ö later) 
and has little to do with the current process execution

z A Difficulty: the repair of errors raised by the RTS
z Example: arithmetic overflow in the middle of a 

sequence of complex expressions
¾ Registers contain partial evaluations
¾ Calling the handler overwrites these registers

z Pearl & Mesa support resumption and termination
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Retry Resumption

z The strict resumption model is not easy to implement
z Alternative: Retry model

¾ Re-execution of the block associated with the exception 
handler

¾ Exception handler sets flag to indicate that error has 
occurred

¾ Example: Eiffel
z Note that local variables of the block must not be re-

initialised on a retry
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The Termination Model

z In the termination model, when an exception has 
been raised and the handler has been called:
¾ The block or procedure containing the handler is 

terminated
¾ Control does not return to where the exception occurred
¾ Control is passed to the caller (procedure domain) or to 

the first statement following the block (block domain)
z An invoked procedure, therefore, may terminate in 

one of a number of conditions:
¾ the normal condition, or
¾ any of the possible exception conditions

z Ada and Java support the termination model
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declare
subtype Temperature is Integer range 0 .. 100;

begin
...
begin

-- read temperature sensor and calculate its value,
-- may result in an exception being raised

exception
-- handler for Constraint_Error for temperature,
-- once handled this block terminates

end;
-- code here executed when block exits normally
-- or when an exception has been raised and handled.

exception
-- handler for other possible exceptions

end;

Block Termination
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Procedure Termination
Procedure P

Procedure Q
Procedure RP invokes Q

Q invokes R

Exception 
r raisedHandler sought

Handler 
for r

Procedure terminates

Control flow changes likely 
to be more drastic than with 

block termination !
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The Hybrid Model

z The handler decides if the error is recoverable
¾ Yes: the handler can return a value and the semantics are 

the same as in the resumption model
¾ No: invoker is terminated

z Example: Signal mechanisms of Mesa
z Eiffel supports the restricted retry model 
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Exception Handling and Operating Systems

z SW will often (not always) run on top of an OS
z The OS will detect certain synchronous error 

conditions
¾ Memory violation, illegal instruction, etc.

z This will usually terminate the process; however, 
many systems allow error recovery

z Example: signal mechanism in POSIX
¾ Allows handlers to be called when exceptions are 

detected
¾ Once the signal is handled, the process is resumed at the 

point where it was “interrupted” (resumption model)
z If a language supports the termination model, the run-

time support system (RTSS) must catch the error and 
manipulate the program state accordingly
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Summary I

An exception handling model has to specify:
z How are exception represented ?

¾ May or may not be explicitly represented in a language
z What is the domain of an exception handler ?

¾ What is the region of computation during which, if an 
exception occurs, the handler will be activated ?

z What if there is no exception handler in the 
enclosing domain ?
¾ An exception can be propagated to the next outer level 

enclosing domain –
¾ or it can be considered to be a programmer error
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Summary II

z How to proceed after an exception has been 
handled ?
¾ Resumption model: the invoker of the exception is 

resumed at the statement after the one at which the 
exception was invoked

¾ Termination model: the block or procedure containing 
the handler is terminated, and control is passed to the 
calling block or procedure.

¾ Hybrid model: the handler may choose whether to 
resume or to terminate

z Can parameters be passed to the handler ?
z If an OS is used, the OS may also use exceptions to 

communicate error conditions to the application 


