!

"

R. v. Hanxleden

Real-Time Systems Programming

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Summer-Semester 2002
Lecture 15
6 June 2002

c‘:we;aliam

SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 1

The 5-Minute Review Session

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

1) When 1s preventive maintenance useful?
2) How can we classify failures?

3) What is a principal limitation of using testing for
system validation?

4) What is the consistent comparison problem?!

5) What are prerequisites for a successful application of
N-version programming?

6) What 1s backward error recovery? What 1s the domino

effect?

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 2

Overview

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

1) Example of a Fail-Safe System

2) Exceptions
- Exception handling in older real-time languages
- Modern exception handling
- Resumption vs. termination

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 3

Example of a Fail-Safe System: VOTRICS

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Train Signalling System developed by Alcatel

® An industrial example of applying design diversity in a
safety-critical RT environment
® Objective of train signalling system:

> Collect data about the state of the tracks in a train station —
current position and movements of trains, position of points

> Set signals and shift points such that trains can move safely
through the station according to a given time table

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 4

VOTRICS cont.

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® VOTRICS is partitioned into two independent
subsystems

® First system:

Accepts commands from operators

Collects data from tracks

>
>
> Calculates intended positions of signals and points
> Uses a standard programming paradigm

>

Uses a TMR architecture to tolerate single HW fault

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 5

VOTRICS cont.

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The second system, the “safety bag”:
> Monitors safety of the state of the station

> Has access to RT data base and intended outputs of 1%
system

> Dynamically evaluates safety predicates derived from the
“rule book™ of the railway authority

> Based on expert-system technology
> Also implemented on TMR HW architecture

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 6

VOTRICS cont.

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The two systems exhibit a substantial degree of
independence

® Used different specifications as starting point
> Operational requirements vs. safety rules

® Used different implementation approach
> Standard programming vs. expert system

® System has been operational in different railway
stations for a number of years, no unsafe state has
been detected

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 7

An Ideal Fault-Tolerant Component

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Service Normal Interface Failure
RequestResponse Exception Exception
TReturn to
I/—\lq\lormal
] Service
Normal Activity Exception Handlers
Internal
Exception
Service Normal Interface Failure
Request Response Exception Exception

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 8

Dynamic Redundancy and Exceptions

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Exception: can be defined as the occurrence of an
error

® Raising (or signalling or throwing) the exception:
Bringing an exception to the attention of the invoker
of the operation which caused the exception

® Handling (or catching) the exception: The mnvoker's
response

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 9

Exceptions for Error Recovery

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Exception handling 1s a forward error recovery

mechanism
> No roll back to a previous state

> Instead control 1s passed to the handler so that recovery
procedures can be initiated

® However, the exception handling facility can be used

to provide backward error recovery
> Can implement recovery blocks using exceptions

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 10

Exceptions

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Exception handling can be used to:

® cope with abnormal conditions arising in the

environment
> The original purpose of exceptions

® cnable program design faults to be tolerated

® provide a general-purpose error-detection and
recovery facility

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 11

Requirements for Exception Handling

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® RI (Simplicity): Should be simple to understand and
use
® R2(Unobtrusiveness):. Exception handling code
should not obscure understanding of the software
» RI and R2 crucial for designing reliable systems!
® R3 (Efficiency): Run-time overheads should be
incurred only when handling an exception
> This may be relaxed, e.g. if speed of recovery is critical
® R4 (Uniformity): Uniform treatment of exceptions
detected both by the environment and by the
program
® R5 (Recovery): It should allow recovery actions

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 12

Traditional Exception Handling

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® [n the following, we will discuss

> Unusal returns (the C classic)
> Forced branches (Assembly)
> The non-local goto

> Procedure variables

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 13

Exceptional Returns

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The classic: encoding exceptions as unusual return
value or error return

® Example: C/POSIX

I f (function(parans) == AN ERROR) {
— error handling code

} else {
- normal return code
b

e R1 (Simplicity): ©
® R2 (Unobtrusiveness): ®
e R3 (Efficiency): S
® R4 (Uniformity): ®
® R5 (Recovery): ©

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 14

Forced Branch

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Typical approach in assembly languages
® Skip return:

> Instruction following the subroutine call is skipped to
indicate the presence/absence of an error

> Return address (program counter) is incremented by
the length of a simple jump instruction

> Can permit more than one exceptional return by
accordingly manipulating the PC

® R1 (Simplicity):
sr pc, PRINT_CHAR ® R2 (Unobtrusiveness):
® R3 (Efficiency):
DEVI CE_NOT_ENABLED| @ R4 (Uniformity):
normal processing ® R5 (Recovery):

©®00 6

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 15

Non-Local Goto

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® A high-level language version of a forced branch

which uses label variables

e Example: non-local got 0 of RTL/2 [Barnes 1976]

svc data rrerr
| abel erl: %a | abel variable %
enddat a

proc \WereErrorlsDetected();
goto erl;
endpr oc;

proc Caller();
Wher eErrorl sDet ect ed();
endpr oc;

proc main();
reéiért:
é;i = restart;
ééiler();

end proc;

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 16

Non-Local Goto

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Control flow 1s broken
> Is therefore best used for unrecoverable errors
® This type of goto is more than just a jump
> Implies an abnormal return from a procedure
® The stack must be unwound

> Until the environment restored 1s that of the procedure
containing the declaration of the label

e R1 (Simplicity): ®
® R2 (Unobtrusiveness): ®
¢ R3 (Efficiency): ©
® R4 (Uniformity): ©

® R5 (Recovery): ©

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 17

Procedure Variables

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® An error procedure variable allows to return control

to the point where the error originated
» Can be used for recoverable errors

® Example in RTL/2:

proc Caller();
svc data rrerr; Wher eError | sDet ected();
| abel erl;
proc(int) erp; endpr oc;
enddat a;
proc recover (int); proc main();
endpr oc; erl :=fail;
erp : = recover;
proc \WereErrorlsDetected(); D
C. Cal ler();
i f recoverabl e then erp(n) e
el se goto erl end; fail:
endpr oc; end proc

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 18

Procedure Variables — Assessment

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Again, programs can become very difficult to
understand

e R1 (Simplicity): ®
® R2 (Unobtrusiveness): &
e R3 (Efficiency): ©
® R4 (Uniformity): ©
® R5 (Recovery): ©

® The modern approach:
> Introduce exception-handling facilities directly into the
language — this allows better structuring

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 19

Exceptions and their Representation

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Error detection can be classified according to who
detects the error
> Environmental error detection (divide by zero)

> Application error detection (assertion failure)

® Error detection can also be classified according to
when it 1s detected:
> A synchronous exception is raised as an immediate result

of a process attempting an inappropriate operation

> An asynchronous exception is raised some time after the
operation causing the error

+ may be raised in the process which executed the
operation or in another process

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 20

Classes of Exceptions 1

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

According to when exceptions are raised by whom, we

can distinguish four types of exceptions:

1. Detected by the environment and raised
synchronously

> Array bounds error, divide by zero

2. Detected by the application and raised
synchronously

> The failure of a program-defined assertion check

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 21

Classes of Exceptions 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

3. Detected by the environment and raised
asynchronously
> An exception raised due to the failure of some health
monitoring mechanism

4. Detected by the application and raised
asynchronously

> one process may recognise that an error condition has
occurred earlier in another process

® Asynchronous exceptions are also called
asynchronous notifications or signals

> Mostly an issue with concurrent programming (= [ater)

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 22

Synchronous Exceptions

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

There are two models for the declaration of
synchronous exceptions:
® A constant name

» needs to be explicitly declared
> Example: Ada

® An object of a particular type

> may or may not need to be explicitly declared
> Example: C++, Java

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 23

Exception Declarations in Ada

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The exceptions that can be raised by the Ada run
time system are declared in package St andar d

® This package 1s visible to all Ada programs

package Standard is

Constraint _Error : exception;
Program Error : exception;
Storage Error : exception;
Taski ng _Error : exception;

end St andar d;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 24

The Domain of an Exception Handler

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

e Within a program, there may be several handlers for
a particular exception
® Associated with each handler i1s a domain:

> The region of computation during which, if an exception
occurs, the handler will be activated

® The accuracy or granularity with which a domain
can be specified will determine how precisely the
source of the exception can be located

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 25

Exception Domains in Ada

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® In a block structured language, like Ada, the domain
1s normally the block

® Procedures, functions, accept statements etc. can also
act as domains

decl are
subtype Tenperature is Integer range 0 .. 100;
begi n
-- read tenperature sensor
exception
-- handl er for Constraint_ Error
end,;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 26

Exception Domains in Java

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Not all blocks can have exception handlers

® The domain of an exception handler must be
explicitly indicated and the block 1s considered to be
guarded

® Java does this with a try-block

try {
/] statenents which may rai se exceptions
}

catch (ExceptionType e) {
[/ handler for e

}

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 27

Granularity of Exception Handling Domain

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

decl are
subtype Tenperature is Integer range 0 .. 100;
subtype Pressure is Integer range 0 .. 50;
subtype Flow is Integer range 0 .. 200;

begi n

-- read tenperature sensor and cal culate its val ue
-- read pressure sensor and calculate its val ue
-- read flow sensor and calculate its val ue
-- adjust tenperature, pressure and flow
exception
-- handl er for Constraint_ Error
end;

® Which calculation caused the exception ?
® Arithmetic overflow etc. = further difficulties

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 28

Solution 1: Decrease Block Size

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

decl are
begi n
begi n
read tenperature sensor and calculate its val ue
exception
handl er for Constraint Error for tenperature
end;
begi n
read pressure sensor and calculate its val ue
excepti on
handl er for Constraint Error for pressure
end;
begi n
read fl ow sensor and calculate its val ue
exception
handl er for Constraint Error for flow
end,
-- adjust tenperature, pressure and fl ow
exception
-- handl er for other possible exceptions
end;

® This is fairly tedious !

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 29

Sol. 2: Handle Exceptions at Statement Level

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

NOT VALI D Ada

end;

decl are

begi n
Read Tenper at ure_Sensor ;
exception -- handl er
Read Pressure_ Sensor;
exception -- handl er
Read Fl ow _Sensor ;
exception -- handl er

adj ust tenperature,

for Constraint Error;

for Constraint Error;

for Constraint_ Error;
pressure and fl ow

® CHILL has such a facility [CCITT 1980]
® R2 (Unobtrusiveness): ®

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 15.sdd

Foil 30

Solution 3: Parametrized Exceptions

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Allow parameters to be passed with the exceptions

® Java:
> Exception is an object

> Can contain arbitrary information

® Ada:

> Provides a predefined procedure
Exception_I nformati on

> This returns implementation-defined details on the
occurrence of the exception

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 31

Exception Handling Resolution

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Question: Which handler handles a raised
exception?

® The answer i1s easy if there exists a handler for the
exception that 1s immediately associated with the
block or procedure where the exception was raised

e However, this may not always be the case
> Example: an exception raised in a procedure as a result
of a failed assertion involving the parameters passed to
the procedure

® In these cases, the answer is not so obvious

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 32

Static Exception Handling Association

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The compiler/linker tries to establish for each
exception the corresponding handler

® [f no such handler can be found, report this as an
error at compile time
o CHILL.

> Requires that a procedure specifies which exceptions it
may raise (that is, not handle locally)

> The compiler can then check the calling context for an
appropriate handler

® Java and C++:
> Allows a function to define which exceptions it can raise

> however, does not require a handler to be available in the
calling context

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 33

Dynamic Association/Exception Propagation

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® [ook for handlers up the chain of invokers; this 1s
called propagating the exception

® The approach taken by Ada, Java, C++, Modula 2/3

® A problem occurs where exceptions have scope
> An exception may be propagated outside its scope,
thereby making 1t impossible for a handler to be found

® Most languages provide a catch all exception
handler

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 34

Unhandled Exceptions

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® An unhandled exception causes a sequential program
to be aborted

® [f the program contains more than one process and a
particular process does not handle an exception it has
raised, then usually that process is aborted

® [t is not clear whether the exception should be
propagated to the parent process — see later

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 35

Resumption vs. Termination Model

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Question: Should the invoker of an exception
continue its execution after the exception has been

handled ?

> Yes = Resumption or notify model
» No = Termination or escape model

> Perhaps — Hybrid model

+ The exception handler decides

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 36

The Resumption Model

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Can view handler as an implicit procedure which 1s
called when the exception is raised

® Example: procedures P, Q and R, handlers Hr and Hq

Hq 5. Hq

resumes Hr

4. Hr raises q .
P 1. P invokes Q

2. Q invokes R

3. Rraisesr resumes\iR ~ Q

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 37

The Resumption Model

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The exception handler may be able to take care of
the problem that caused the exception

® Resumption model may be advantageous when the
exception has been raised asynchronously (= /ater)
and has little to do with the current process execution

® A Difficulty: the repair of errors raised by the RTS

® Example: arithmetic overflow in the middle of a

sequence of complex expressions
> Registers contain partial evaluations

> Calling the handler overwrites these registers

® Pearl & Mesa support resumption and termination

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 38

Retry Resumption

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The strict resumption model 1s not easy to implement

® Alternative: Retry model

> Re-execution of the block associated with the exception
handler

> Exception handler sets flag to indicate that error has
occurred

> Example: Eiffel

® Note that local variables of the block must not be re-
nitialised on a retry

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 39

The Termination Model

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® In the termination model, when an exception has

been raised and the handler has been called:
> The block or procedure containing the handler is
terminated

> Control does not return to where the exception occurred

> Control is passed to the caller (procedure domain) or to
the first statement following the block (block domain)

® An invoked procedure, therefore, may terminate in

one of a number of conditions:
> the normal condition, or

> any of the possible exception conditions

® Ada and Java support the termination model

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 40

Block Termination

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

decl are
subtype Tenperature is Integer range 0 .. 100;
begi n
begi n
-- read tenperature sensor and calculate its val ue,
-- may result in an exception being raised
exception
-- handler for Constraint Error for tenperature,
-- once handl ed this block term nates
end;
-- code here executed when block exits normally
-- or when an exception has been rai sed and handl ed.
excepti on
-- handl er for other possible exceptions

end;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 41

Procedure P

P 1ny

\

Procedure terr

rokes P R
)—V w W' rocldure

ninates

R. v. Hanxleden

Procedure Termination

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Procedure Q

Exception
_ rraised

Handler W

\+ Handl
for r
Control flow changes likely

to be more drastic than with
block termination !

[
=

SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 42

The Hybrid Model

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The handler decides if the error 1s recoverable
> Yes: the handler can return a value and the semantics are
the same as in the resumption model

> No: invoker 1s terminated

® Example: Signal mechanisms of Mesa
® FEiffel supports the restricted retry model

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 43

Exception Handling and Operating Systems

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

e SW will often (not always) run on top of an OS
® The OS will detect certain synchronous error
conditions
> Memory violation, illegal instruction, etc.
® This will usually terminate the process; however,
many systems allow error recovery

® Example: signal mechanism in POSIX
> Allows handlers to be called when exceptions are
detected
> Once the signal 1s handled, the process 1s resumed at the
point where it was “interrupted” (resumption model)
® [f a language supports the termination model, the run-
time support system (RTSS) must catch the error and

manipulate the program state accordingly

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 44

Summary 1

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

An exception handling model has to specify:
® How are exception represented ?

> May or may not be explicitly represented in a language
® Whatis the domain of an exception handler ?

> What is the region of computation during which, if an
exception occurs, the handler will be activated ?

® What if there is no exception handler in the
enclosing domain ?

> An exception can be propagated to the next outer level
enclosing domain —

> or it can be considered to be a programmer error

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 45

Summary 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® How to proceed after an exception has been
handled ?

> Resumption model: the invoker of the exception is
resumed at the statement after the one at which the
exception was invoked

> Termination model: the block or procedure containing
the handler 1s terminated, and control is passed to the
calling block or procedure.

> Hybrid model: the handler may choose whether to
resume or to terminate

® Can parameters be passed to the handler ?

e [f an OS is used, the OS may also use exceptions to
communicate error conditions to the application

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 15.sdd Foil 46

