
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 1

Real-Time Systems Programming

Exceptions contd.

Summer-Semester 2002
Lecture 16

7 June 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 2

Overview

1) Exception handling in Ada, Java and C
2) Recovery blocks and exceptions
3) Exceptions and timing faults

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 3

Exception Handling in Ada

Ada supports:
Explicit exception declaration
The termination model
Propagation of unhandled exceptions
A limited form of exception parameters

For further information:
See Chapters 6 and 12 of [Burns and Wellings 2001]

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 4

Java Exceptions

... also use termination model

... however, are integrated into OO model

... are subclasses of the predefined class
java.lang.Throwable

The language also defines other classes, for example:
Error, Exception, and RuntimeException

RuntimeException includes
ClassCastException, IndexOutOfBound-
Exception, NullPointerException, etc.

Checked exceptions have to be identified in in the
throws clause of a method's declaration

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 5

The Throwable Class Hierarchy

Throwable

Error Exception

LinkageError
VirtualMachineError

RuntimEception

User-Defined Exceptions
unchecked

checked

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 6

Example: Temperature Controller

public class IntegerConstraintError extends Exception
{

private int lowerRange, upperRange, value;

public IntegerConstraintError(int L, int U, int V)
{

super(); // call constructor on parent class
lowerRange = L;
upperRange = U;
value = V;

}

public String getMessage()
{

return ("Integer Constraint Error: Lower Range " +
java.lang.Integer.toString(lowerRange) + " Upper Range "
+ java.lang.Integer.toString(upperRange) + " Found " +
java.lang.Integer.toString(value));

}
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 7

import exceptionLibrary.IntegerConstraintError;

public class Temperature
{

private int T;

public Temperature(int initial) throws IntegerConstraintError
// constructor

{ ... }

public void setValue(int V) throws IntegerConstraintError
{ ... }

public int readValue()
{ return T; };

// both the constructor and setValue can throw an
// IntegerConstraintError

};

Temperature Controller cont.

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 8

class ActuatorDead extends Exception
{

public String getMessage()
{ return ("Actuator Dead");}

};

class TemperatureController
{

public TemperatureController(int T)
throws IntegerConstraintError

{
currentTemperature = new Temperature(T);

};

Temperature currentTemperature;

public void setTemperature(int T)
throws ActuatorDead, IntegerConstraintError

{ currentTemperature.setValue(T); };

int readTemperature()
{ return currentTemperature.readValue(); }

};

Temperature Controller cont.

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 9

Java: Exception Declaration

Each function must specify a list of throwable
checked exceptions throw A, B, C

Function may throw any exception in this list and any of
the unchecked exceptions.

A, B and C must be subclasses of Exception
If a function attempts to throw an exception which is
not allowed by its throws list:

Compilation error occurs

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 10

Temperature Controller cont.

import exceptionLibrary.IntegerConstraintError;
class Temperature
{

int T;

void check(int value) throws IntegerConstraintError
{

if(value > 100 || value < 0) {
throw new IntegerConstraintError(0, 100, value);

};
}

public Temperature(int initial) throws IntegerConstraintError
// constructor

{ check(initial); T = initial; }

public void setValue(int V) throws IntegerConstraintError
{ check(V); T = V; };

public int readValue()
{ return T; };

};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 11

Temperature Controller cont.

// given TemperatureController

try {
TemperatureController TC = new TemperatureController(20);

TC.setTemperature(100);
// Statements which manipulate the temperature

}
catch (IntegerConstraintError error) {

// Exception caught, print error message on
// the standard output
System.out.println(error.getMessage());

}
catch (ActuatorDead error) {

System.out.println(error.getMessage());
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 12

The catch Statement

The catch statement is like a function declaration
Parameter identifies the exception type to be caught
Inside the handler, the object name behaves like a local
variable

A handler with parameter type T will catch a thrown
object of type E if:

T and E are the same type, or
T is a parent (super) class of E at the throw point

This last point makes the Java exception handling
facility very powerful

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 13

Java: Catching All

try {
// statements which might raise the exception
// IntegerConstraintError or ActuatorDead

}
catch(Exception E) {

// Handler will catch all exceptions of
// type exception and any derived type;
// However, from within the handler only the
// methods of Exception are accessible

}

A call to E.getMessage will dispatch to the
appropriate routine for the type of object thrown
catch(Exception E) is equivalent to Ada's
when others

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 14

Finally
Java supports a finally
clause as part of a try
statement
Code here is guaranteed to
execute whatever happens
in the try statement
irrespective of whether
exceptions are thrown,
caught, propagated or,
indeed, even if there are
no exceptions thrown at
all

try
{
...

}
catch(..)
{
...
}
finally
{
// code executed
// under all
// circumstances

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 15

Exceptions in C

C does not define any exception handling facilities
This clearly limits the usefulness of C for the
structured programming of reliable systems
However, it is possible to provide some form of
exception handling mechanism by using the C macro
facility
To implement a termination model, it is necessary to
save the status of a program's registers etc. on entry
to an exception domain and then restore them if an
exception occurs

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 16

C: Setjmp and Longjmp

The POSIX facilities setjmp and longjmp can be
used to implement a termination model
setjump saves the program status and returns a 0
longjmp restores the program status and results in
the program abandoning its current execution and
restarting from the position where setjump was
called

This time setjump returns the values passed by
longjmp

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 17

/* begin exception domain */
typedef char *exception; /* Pointer type to character string */
exception error = "error"; /* Represents exception "error" */

if ((current_exception = (exception) setjmp(save_area)) == 0) {
/* save the registers and so on in save_area, returned 0 */

/* the guarded region */
/* when an exception "error" is identified */
longjmp(save_area, (int) error);
/* no return */

}
else {

if (current_exception == error) {
/* handler for "error" */

}
else {

/* re-raise exception in surrounding domain */
}

}

Example with Setjmp and Longjmp

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 18

C Macros for Exception Handling

#define NEW_EXCEPTION(name) ...
/* code for declaring an exception */

#define BEGIN ...
/* code for entering an exception domain */

#define EXCEPTION ...
/* code for beginning exception handlers */

#define END ...
/* code for leaving an exception domain */

#define RAISE(name) ...
/* code for raising an exception */

#define WHEN(name) ...
/* code for handler */

#define OTHERS ...
/* code for catch all exception handler */

Evaluation of plain setjmp and longjmp
regarding R1 (Simplicity) and R2 (Unobtrusiveness):

The use of C macros can help here

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 19

NEW_EXCEPTION(sensor_high);
NEW_EXCEPTION(sensor_low);
NEW_EXCEPTION(sensor_dead);
/* other declarations */

BEGIN
/* statements which may cause the above */
/* exceptions to be raised; for example */
RAISE(sensor_high);

EXCEPTION
WHEN(sensor_high)

/* take some corrective action */
WHEN(sensor_low)

/* take some corrective action */
WHEN(OTHERS)

/* sound an alarm */
END;

A Termination Model using C Macros

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 20

Recovery Blocks and Exceptions

Remember: ensure <acceptance test>
by

<primary module>
else by

<alternative module>
else by

<alternative module>
...

else by
<alternative module>

else error

Error detection is provided by the acceptance test
The negation of a test which would raise an exception

The only problem is the implementation of state
saving and state restoration

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 21

 A Recovery Cache

Consider:

Body may require support
from the run-time system
possibly even from hardware

Also, may be ineffective for state restoration
May be more desirable to provide more basic primitives
Would allow program to use its knowledge of the
application to optimise the amount of information saved

package Recovery_Cache is
procedure Save; -- save volatile state
procedure Restore; --restore state

end Recovery_Cache;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 22

Recovery Blocks in Ada

procedure Recovery_Block is
Primary_Failure, Secondary_Failure,
Tertiary_Failure: exception;
Recovery_Block_Failure : exception;
type Module is (Primary, Secondary, Tertiary);

function Acceptance_Test return Boolean is
begin
-- code for acceptance test

end Acceptance_Test;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 23

procedure Primary is
begin

-- code for primary algorithm
if not Acceptance_Test then

raise Primary_Failure;
end if;

exception
when Primary_Failure =>

-- forward recovery to return environment
-- to the required state
raise;

when others =>
-- unexpected error
-- forward recovery to return environment
-- to the required state
raise Primary_Failure;

end Primary;
-- similarly for Secondary and Tertiary

Recovery Blocks in Ada cont.

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 24

begin
Recovery_Cache.Save;
for Try in Module loop
begin
case Try is

when Primary => Primary; exit;
when Secondary => Secondary; exit;
when Tertiary => Tertiary;

end case;
exception
when Primary_Failure =>

Recovery_Cache.Restore;
when Secondary_Failure =>

Recovery_Cache.Restore;
when Tertiary_Failure =>

Recovery_Cache.Restore;
raise Recovery_Block_Failure;

when others =>
Recovery_Cache.Restore;
raise Recovery_Block_Failure;

end;
end loop;

end Recovery_Block;

Recovery Blocks in Ada cont.

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 25

Exceptions and Timing Faults

Recall: It is necessary to be able to detect
overrun of deadline
overrun of worst-case execution time
sporadic events occurring more often than predicted
timeout on communications

Exceptions may be used to indicate such timing faults
May use exceptions to trigger an event-based
reconfiguration (performing a mode change)

Alter process deadlines or suspend/terminate processes
Start new processes
Ask a process to immediately return best result obtained so
far

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 26

Exceptions in Real-Time Euclid

Real-Time Euclid combines asynchronous event
handling with its real-time abstractions

Time constraints are associated with processes
Can define numbered exceptions

A process may raise an exception in another process
Three kinds of raise statement:

except – similar to Ada raise, but with resumption
deactivate – terminates current iteration of (periodic)
process
kill – explicitly removes a process from list of active
processes (but still executes exception handler)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 27

Real-Time Euclid: Example

process TempController: periodic frame 60
first activation atTime 600 or atEvent startMonitoring

handler (except_num)
exceptions (200, 201, 304)
imports (var consul, ...)
var message: string(80), ...
case except_num of

label 200: % very low temperature
message := “reactor is shut down”
consul := message

label 201: % very high temperature
message := “reactor is shut down”
consul := message
alarm := true % activate alarm device

label 304: % timeout on sensor
% reboot sensor device

end case
end handler

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 28

Real-Time Euclid: Example cont.

...

wait(temp_available) noLongerThan 10: 304

currentTemp := ... % Low-level i/o
log := currentTemp

if currentTemp < 100 then
deactivate TempController: 200

elseif currentTemp > 10000 then
kill TempController: 201

end if

% Other computations

end TempController

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 29

Summary I

It is not unanimously accepted that exception
handling facilities should be provided in a language
The occurrence of an exception often requires a two-
fold action

an internal clean-up, to ensure failure atomicity
an external error treatment

Exceptions may implement recovery blocks
Also allows to perform forward error recovery before
restoring the state

Exceptions may also handle timing faults
Facilitates dynamic reconfiguration

For example, C and occam2 have no
exceptions
To sceptics, an exception is a GOTO where
the destination is undeterminable and the
source is unknown!
Exceptions can, therefore, be considered to
be the antithesis of structured programming
However, this is not the view taken here!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 30

Summary II

Language Domain Propagation Model Parameters
Ada Block Yes Termination Limited
Java Block Yes Termination Yes
C++ Block Yes Termination Yes
CHILL Statement No Termination No
CLU Statement No Termination Yes
Mesa Block yes Hybrid Yes

C supports a low-level exception handling
mechanism using setjmp and longjmp
No language gets perfect scores in all five criteria
(simplicity, unobtrusiveness, efficience, uniformity,
recovery)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_16.sdd Foil 31

Problem Set 8 – Due: (Mon) 17 June 2002

Modify the robot built last week such that
a) In case it drives for more than 1m without finding a dark line, it stops and

raises an acoustic alarm
b) In case it finds a line and this line is thicker than 10cm, it also stops, and raises

another type of alarm

You should provide two versions of the controller, both using exceptions to
implement the two cases described above.
1) In C – using the C exception-handling macros introduced in class (yes,

defining these macros is part of the problem :-)
2) In Java – using for example lejos (see http://www.informatik.uni-

kiel.de/~kwi/programmierung/lejos.html)

a) Documentation (overview of approach and assumptions, commented source
code, measurement of accuracy)
(2x3 pts)

b) Functional robot (2x3 pts + up to 3 bonus points for best entry)
Enjoy!

