
R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 1

Concurrency

Summer-Semester 2002
Lecture 16

7 June 2002

Real-Time Systems Programming

The following foils were adapted from the ones provided by Burns & Wellings, gratefully
acknowledged here!

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 2

The 5 Minute Review Session

1. Fault avoidance: What are the limits of testing ?

2. Fault tolerance: What are the limits of HW
redundancy ?

3. What types of voting exist ?

4. What are the requirements on an exception handling
facility?

5. What aspects are there of exception handling?

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 3

Characteristics of RTS

Large and complex

Concurrent control of separate system components

Facilities to interact with special purpose hardware

Guaranteed response times

Extreme reliability

Efficient implementation

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 4

Aim

To illustrate the requirements for concurrent
programming

To demonstrate the variety of models for creating
processes

To lay the foundations for studying inter-process
communication

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 5

Contents

1. What is Concurrency ?

2. Why do we need it ?

3. Cyclic executives

4. The run-time support system

5. Types of processes

6. Process states

7. Process representations

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 6

Concurrent Programming

Concurrent Programming is the name given to
programming notation and techniques for expressing
potential parallelism and solving the resulting
synchronization and communication problems.
Implementation of parallelism is a topic in computer systems
(hardware and software) that is essentially independent of
concurrent programming.
Concurrent programming is important because it provides an
abstract setting in which to study parallelism without getting
bogged down in the implementation details.

Ben-Ari, 1982

Concurrent Programming is the name given to
programming notation and techniques for expressing
potential parallelism and solving the resulting
synchronization and communication problems.
Implementation of parallelism is a topic in computer systems
(hardware and software) that is essentially independent of
concurrent programming.
Concurrent programming is important because it provides an
abstract setting in which to study parallelism without getting
bogged down in the implementation details.

Ben-Ari, 1982

•Implementation of parallelism is a topic in computer systems (hardware and software)
that is essentially independent of concurrent programming.
•The topic has been around for a long time (can we traced back to Conway and Dijkstra in
the early 60’s)
•Perhaps its defining moment was the publications of Dijkstra’s paper on Co-operating
Sequential Processesin 1965
•First concurrent programming language Simula 66?
•Not until 1983 that we see the first international standard concurrent programming
language - Ada.
•Indeed is not universally accepted that programming languages should be concurrent

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 7

Why Concurrency ?

To model the parallelism in the real world
Virtually all real-time systems are inherently
concurrent — devices operate in parallel in
the real world
Another reason: To allow the expression of
potential parallelism so that more than one
computer can be used to solve the problem

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 8

Example: Airline Reservation System

VDU

VDU

VDU

VDU

P P P P

Process

Database

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 9

Example: CPU and I/O Devices
CPU

Initiate I/O
Operation

Interrupt I/O
Routine
I/O Finished

I/O Device

Process I/O
Request

Signal Completion

Continue with
Outstanding Requests

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 10

Example: Autonomous Vehicle
Mars rover: Control software may (concurrently)

Take in the surrounding terrain to map a path
Get sensor inputs on which wheels touch the ground
Control the power put out to any motor
Sample air, temperature, light, scoop up little pieces of
Mars
Get input from humans back on earth („unjam that stoopid
antenna!“)

Inputs may be related or not

SW has to provide timely response to all inputs

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 11

A concurrent program:
Collection of autonomous sequential processes
Execute (logically) in parallel
Each process has single thread of control

Alternatives for implementation (i.e. execution) of a
collection of processes :

Multiprogramming
Multiprocessing
Distributed Processing

Terminology

– Multiprogramming: Processes multiplex their executions on a single processor
– Multiprocessing: Processes multiplex their executions on a multiprocessor system where

there is access to shared memory
– Distributed Processing: Processes multiplex their executions on several processors which do

not share memory

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 12

Doing Multiple Things “at the Same Time“

1. Use one process
Cyclic executive
Equivalent to sequential programming

2. Use signals to emulate multiple processes
A signal handler similar to an independent, asynchronous
flow of control – but not quite

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 13

3. Use many processes
Dedicated process for each activity
Have to coordinate processes
Potential problems with performance, scalability

4. Use not quite so many processes
Careful combination of activities into processes
May simplify programming effort

5. Use threads
In POSIX.4a: pthreads

Doing Multiple Things “at the Same Time“

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 14

The Cyclic Executive
Traditional programming languages (Pascal, C,
Fortran, Cobol) are sequential
Emulate concurrency by cyclic execution of a program
sequence to handle the various concurrent activities

while (1) {
/* Read keyboard */
/* Recompute player positions */
/* Update the display */

}

while (1) {
/* Read keyboard */
/* Recompute player positions */
/* Update the display */

}

Example: Video game controller

May work for small RT applications, with things
happening in synch

•It is up to the programmer to construct his/her system so that it involves the cyclic
execution of a program sequence to handle the various concurrent tasks.
•This complicates the programmer's already difficult task and involves him/her in
considerations of structures which are irrelevant to the control of the tasks in hand;
•The resulting programs will be more obscure and inelegant;
•It makes proving program correctness more difficult;
•It makes decomposition of the problem more complex;
•Parallel execution of the program on more than one processor will be much more
difficult to achieve;
•The placement of code to deal with faults is more problematic.

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 15

The Cyclic Executive

Loop is infinite while
Spins as fast as possible
May consume more resources than needed (busy wait)

May increase power consumption
May be unacceptable in shared environment

Loop has to run fast enough to service the input with
highest frequency

May be difficult to achieve
Assumes that tasks all have harmonic frequencies

May also periodically poll for other work from within
a long computation

The classical Macintosh programming model

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 16

The Cyclic Executive – Disadvantages
Resulting programs more obscure and inelegant
Decomposition of the problem becomes more complex
Parallel execution of the program on more than one
processor difficult
Placement of code to deal with faults is more
problematic

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 17

Emulating Multitasking with Signal Handler
A POSIX signal is a SW analogue to a HW interrupt

However, signal handler cannot synchronize execution
with any of the other signal-simulated tasks – there
really is just one task !

If the signal handler blocks:
Entire program blocks
Results in a hung application

More on signals later

•When a process receives a signal:
– Switch control to signal handler

•Upon completion of the signal handler:
– Return control to where the signal occurred
– Is similar to exceptions with resumption

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 18

Non-existing

Created

Initializing

Executable

Terminated

Non-existing

Process States

•A process may
– never terminate
– fail during initialization

•Executable processes may not execute due to lack of resources (e.g., the CPU)

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 19

The Run-Time Support System

RTSS similar to scheduler in an operating system
RTSS is logically between hardware and application
software
Scheduling algorithm of RTSS affects temporal
behavior of the SW
For well-constructed programs, the logical behavior
should not depend on the RTSS

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 20

RTSS Implementations

An RTSS may be implemented as
Software structure programmed as part of the
application (approach of Modula-2)
Standard software system generated with the program
object code by the compiler

Typical for Ada and Java and co-design systems such as
MetroPOLIS

Hardware structure microcoded into the processor
for efficiency

E.g., an occam2 program running on the transputer has
such a run-time system

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 21

Processes and Threads
All operating systems provide processes
Processes execute in their own virtual machine (VM)

avoids interference from other processes
Recent OSs provide mechanisms for creating threads:

co-exist within the same VM
have unrestricted access to their VM

The programmer and the language must provide the
protection from interference
Threads may be provided transparently to the OS

Example: Windows 2000
Threads are visible to the kernels
Fibers are invisible

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 22

Concurrent Programming Constructs

Fundamental facilities:
Expression of concurrent execution through the notion of
process
Process synchronization
Inter-process communication

Processes may be
independent
cooperating
competing

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 23

Properties of Processes
Process structure

Static: fixed and know at compile time
Dynamic: created at run time

Language Structure Level
Concurrent Pascal static flat
occam2 static nested
Modula 1/2 dynamic flat
C/POSIX dynamic flat
Ada dynamic nested
Java dynamic nested

Language Structure Level
Concurrent Pascal static flat
occam2 static nested
Modula 1/2 dynamic flat
C/POSIX dynamic flat
Ada dynamic nested
Java dynamic nested

Process level
Nested:
processes can be
defined at any
level
Flat: processes
defined only at
outermost level

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 24

Properties of Processes

Process granularity
Coarse (Ada, POSIX processes/threads, Java)
Fine (occam2)

Process initialization
Parameter passing – at process creation
IPC – after a proces has started executing

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 25

Processes Termination
Processes can terminate in a number of ways:

Completion of execution of the process body

Suicide, by execution of a self-terminate statement

Abortion, through the explicit action of another
process

Occurrence of an untrapped error condition

Never: processes are assumed to be non-terminating
loops

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 26

Nested Processes
Hierarchies of processes can be created and inter-
process relationships formed
Parent/child relationship:

Parent process (or block) creates child
Parent process may be delayed while child is created and
initialized

Guardian/dependent relationship:
Dependent process (or block) terminates if its guardian
(or master) terminates
Dependent process may depend on

Guardian process itself or
An inner block of the guardian

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 27

Nested Processes
Guardian is not allowed to exit from a block until all
dependent processes of that block have terminated

A process cannot exist outside of its scope
Guardian cannot terminate until all its dependents
have terminated
A program cannot terminate until all its processes
have terminated
A parent of a process may also be its guardian

E.g. with languages that allow only static process
structures – such as occam2

With dynamic nested process structures, the parent
and the guardian may or may not be identical (Ada)

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 28

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Process States

Waiting Dependent
Termination

Waiting Child
Initialization

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 29

Active objects
Undertake spontaneous actions (active agents)

Reactive objects
Only perform actions when invoked (passive data)
Resources

Can control order of actions and access to internal
states
May for example be used by only one agent at a time
Accessability may also depend on internal state

Passive objects
No control over order

Processes and Objects

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 30

Implementation of resources requires control agent
Protected (or synchronized) resources

Passive resource controller
Pro: efficiency
Con: inflexibility

Server
Active resource controller
Pro: flexibility
Con: may lead to proliferation of processes

Ada, Java, POSIX support all
Occam2 supports only servers

Resources

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 31

There are different basic mechanisms for
representing concurrent execution:
Coroutines
Fork and Join
Cobegin
Explicit Process Declaration

Process Representation

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 32

Coroutine A Coroutine B Coroutine C

1

resume B

2
3 5

resume A

6

6

7

resume B

8
resume C

4

9
resume A

10
11

resume C12

1213

resume B14

15

Coroutine Flow Control

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 33

Coroutines are similar to subroutines
However:

Control is passed in symmetric rather than in hierarchical
way
Control is passed with resume statement
There is no return statement
The value of the data local to the coroutine persist
between successive calls
The execution of a coroutine is supended as control leaves
it, to carry on where it left off when it resumed

Example: Modula 2
So … do coroutines express true parallelism?

Coroutines

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 34

Fork:
Starts a designated routine, concurrently with the invoker

Join (POSIX: wait):
Invoker waits for the completion of the invoked routine

Can be found in Mesa and POSIX

function F return is ...;
procedure P;

...
C:= fork F;
...
J:= join C;

...
end P;

function F return is ...;
procedure P;

...
C:= fork F;
...
J:= join C;

...
end P;

Fork and Join

•After the fork, P and F will be executing concurrently.
•At the point of the join, P will wait until F has finished (if it has not already done so

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 35

for (I=0; I!=10; I++) {
pid[I] = fork();

}
wait . . .

for (I=0; I!=10; I++) {
pid[I] = fork();

}
wait . . .

How many processes were created?

 Example: UNIX

 … allow dynamic process creation and the passing
of parameters to child processes

 Usually child returns single value upon termination
 Pro: flexible
 Con: unstructured

 For example, guardian must explicitly rejoin dependants

Fork and Join

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 36

Cobegin (or parbegin or par):
A structured way of denoting the concurrent execution of
a collection of statements

cobegin
S1;
S2;
S3;
.
.
Sn

coend

cobegin
S1;
S2;
S3;
.
.
Sn

coend

 Can be found in
Edison and
occam2

Cobegin

•S1, S2 etc, execute concurrently
•The statement terminates when S1, S2 etc have terminated
•Each Si may be any statement allowed within the language

– This includes cobegin (nesting)

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 37

To clarify program structure:
Routines state whether they will be executed concurrently
This does not say when they will execute!

Process or task creation may be
Explicit
Implicit

task body Process is
begin
. . .

end;

task body Process is
begin
. . .

end;

Explicit Process Declaration

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 38

The application domains of most real-time systems
are inherently parallel
The inclusion of the notion of process within a real-
time programming language makes an enormous
difference to its expressive power and ease of use
Without concurrency the software must be
constructed as a single control loop

The structure of this loop cannot retain the logical
distinction between systems components
It is particularly difficult to give process-oriented timing
and reliability requirements without the notion of a
process being visible in the code

Summary I

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 39

The use of a concurrent programming language
requires a run-time support system to manage
process execution
Processes have several states:

non-existing
created
initialized
executable
waiting dependent termination
waiting child initialization
terminated

Summary II

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 40

A process model is characterized by its:
Structure

static
dynamic

Level
top level processes only (flat)
multilevel (nested)

Initialization
with or without parameter passing

Granularity
fine grain
coarse grain

Summary III

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 41

A process model is further characterized by its:
Termination

Natural
Suicide
Abortion
Untrapped error
Never

Representation
Coroutines
Fork/join
Cobegin
Explicit process declarations

Summary IV

R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_17.sdd Foil 42

To Go Further

Chapter 7 of [Burns and Wellings 2001]

Chapter 3 of Gallmeister, POSIX.4: Programming for
the Real World, O'Really, 1995

