
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 1

Real-Time Systems Programming

Concurrent Programming contd

Summer-Semester 2002
Lecture 18

14 June 2002



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 2

Contents

Concurrency in
Ada (tasks)
Java (threads)
POSIX/C (processes and threads)
LegOS

Where to specify concurrency?
A simple embedded system



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 3

Concurrency in Ada

The unit of concurrency in Ada is called a task
Tasks must be explicitly declared

No fork/join statement, COBEGIN/PAR etc
Tasks may be declared at any program level
Tasks are created

implicitly upon entry to the scope of their declaration, or
via the action of an allocator

Tasks may communicate and synchronise via a 
variety of mechanisms:

Rendezvous (a form of synchronised message passing)
Protected units (a monitor/conditional critical region)
Shared variables



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 4

task type Server (Init : Parameter) is
entry Service;

end Server;

Ada Example Task Structure

Specification

Body

task body Server is
begin

...
accept Service do

...
-- Sequence of statements;
...

end Service;
...

end Server;

A task can be declared as a type or as a single 
instance (anonymous type)
A task type consists of a specification and a body
The specification contains

the type name
an optional discriminant part which defines 
parameters
a visible part defining entries and representation 
clauses
a private part defining hidden entries and 
representation clauses



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 5

Ada Example Task Specifications
task type Controller; This task type has no entries; 

no other tasks can 
communicate directly

task type Agent(Param : Integer); Task objects can be passed 
an integer parameter at 
their creation time

task type Garage_Attendant (

Pump : Pump_Number := 1) is

entry Serve_Leaded(G : Gallons);

entry Serve_Unleaded(G : Gallons);

end Garage_Attendant;
Objects will allow 
communication via two 
entries

The number of the pump to 
be served is passed at task 
creation time; if no value is 
passed a default of 1 is used



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 6

Creation of Ada Tasks

Main_Controller : Controller;
Attendant1 : Garage_Attendant(2);

type Garage_Forecourt is array (1 .. 10) of Garage_Attendant;
GF : Garage_Forecourt;

type One_Pump_Garage(Pump : Pump_Number := 1) is
record

P : Garage_Attendant(Pump);
C : Cashier(Pump);

end record;
OPG : One_Pump_Garage(4);

Can use array to create multiple instances
Can create dynamic number of tasks via

giving non-static task array bounds – or
by using the new operator



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 7

Ada: Robot Arm Example

type Dimension is (Xplane, Yplane, Zplane);
task type Control(Dim : Dimension);
C1 : Control(Xplane);
C2 : Control(Yplane);
C3 : Control(Zplane);

task body Control is
Position : Integer; -- absolute position
Setting : Integer; -- relative movement

begin
Position := 0; -- rest position
loop

New_Setting (Dim, Setting);
Position := Position + Setting;
Move_Arm (Dim, Position);

end loop;
end Control;



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 8

An Ada Procedure with Two Tasks
procedure Example1 is

task A;
task B;

task body A is
-- local declarations for task A

begin
-- sequence of statement for task A

end A;

task body B is
-- local declarations for task B

begin
-- sequence of statements for task B

end B;
begin

-- tasks A and B start their executions before
-- the first statement of the procedure’s sequence
-- of statements.
...

end Example1; -- the procedure does not terminate
-- until tasks A and B have
-- terminated



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 9

Activation, Execution & Finalisation

Activation
The elaboration of the declarative part, if any, of the task 
body
Any local variables of the task are created and initialized 
during this phase
In other languages called initialization

Normal Execution
Execution of the statements within the body of the task

Finalization
Execution of any finalization code associated with any 
objects in its declarative part

The execution of an Ada task object has three main phases:



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 10

Ada Task Activation

declare
task type T_Type1;
task A;
B, C : T_Type1;
task body A is ...;
task body T_Type1 is
...

begin
...

end;

A is created when its 
declaration is elaborated

B and C are created 
when their declarations 
are elaborated

Tasks are activated 
when elaboration is 
finished

First statement executes
once all tasks have 
finished their activation

All static tasks created within a single declarative 
region begin their activation immediately after the 
region has elaborated
The first statement following the declarative region is 
executed after all tasks have finished their activation
Following activation:

Execution of the task object is defined by the 
appropriate task body

A task need not wait for the activation of other task 
objects before executing its body
A task may attempt to communicate with another task 
once that task has been created

Calling task is delayed until the called task is ready



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 11

Task States in Ada
non-existing

finalizing

created

Elaboration of 
declarative part

activating

Elaboration 
successful

executable

Activation 
successful

Exception raised in task 
activation

completed

Completion of task 
body

non-existing
Out of 
scope

terminated

Finalization 
complete

Exception raised 
in declarative 
part

If an exception is raised in the elaboration of a 
declarative part:

No tasks created during that elaboration is activated, 
and instead will be terminated

If an exception is raised during a task's activation:
Task becomes completed or terminated and the 
predefined exception Tasking_Error is raised 
prior to the first executable statement of the 
declarative block (or after the call to the allocator)
This exception is raised just once

The raise will wait until all currently activating tasks 
finish their activation



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 12

Ada: Creation and Hierarchies

Recall: The parent of a task is responsible for the 
creation of a child
When a parent task creates a child:

Must wait for the child to finish activating
This suspension occurs

Immediately after the action of the allocator (operator 
new), or
After it finishes elaborating the associated declarative part



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 13

task Parent_And_Master;
task body Parent_And_Master is
task Child_And_Dependent;
task body Child_And_Dependent is
begin ... end;

begin
...

end Parent_And_Master;

Termination and Hierarchies

Recall: The master of a dependent task must wait for 
the dependent to terminate before itself can terminate
In many cases the parent is also the master

Parent_And_Master becomes completed; it 
terminates when Child_And_Dependent 
terminates



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 14

Master Blocks

The task executing the master block creates 
Dependent and therefore is its parent
However, it is the MASTER block which cannot 
exit until the Dependent has terminated (not the 
parent task)

declare -- internal MASTER block
-- declaration and initialisation of local variables
-- declaration of any finalisation routines

task Dependent;
task body Dependent is begin ... end;

begin -- MASTER block
...

end; -- MASTER block



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 15

Termination and Dynamic Tasks

Master of a task created by an allocator:
Declarative region containing access type definition

declare
task type Dependent;
type Dependent_Ptr is access Dependent;
A : Dependent_Ptr;
task body Dependent is begin ... end;

begin
...
declare
B : Dependent;
C : Dependent_Ptr := new Dependent;

begin
A := C;

end;
end;

Must wait for B to terminate but not C.all; 
C.all could still be active although the name 
C.all  is out of scope; the task can still be 
accessed via A



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 16

Task Termination

A task terminates when
it finishes execution of its body

normally, or
as the result of an unhandled exception

it executes a terminate alternative of a select 
statement (see later), thereby implying that it is no 
longer required.
it is aborted
all is dependents have terminated



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 17

Unhandled Exceptions

The effect of an unhandled exception in a task is 
isolated to just that task
Another task can inquire (by the use of an attribute) 
if a task has terminated
However, the enquiring task cannot differentiate 
between normal or error termination of the other 
task.

if T’Terminated then
-- for some task T
-- error recovery action

end if;



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 18

Task Abortion

Any task can abort any other task whose name is in 
scope
When a task is aborted all its dependents are also 
aborted
The abort facility allows wayward tasks to be 
removed 
If, however,a rogue task is anonymous then it cannot 
be named and hence cannot easily be aborted
How could you abort it?
It is desirable, therefore, that only terminated tasks 
are made anonymous



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 19

Task States in Ada

executable

created

non-existing

finalizing
activating

completed

non-existing

terminated

Child task 
activation 
complete

Create child task

waiting child 
activation

Dependent tasks 
terminate

Exit a 
master 
block

waiting dependent 
termination

Exit a 
master 
block



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 20

Concurrency in Java

Predefined class java.lang.Thread
Provides thread/process creation mechanism

To avoid all threads having to be child classes of 
Thread:

Standard interface
• public interface Runnable {

• public abstract void run();

• }
Hence, any class which wishes to express concurrent 
execution must

Implement this interface
Provide the run method



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 21

public class Thread extends Object implements Runnable
{

public Thread();
public Thread(Runnable target);

public void run();
public native synchronized void start();
// throws IllegalThreadStateException

public static Thread currentThread();
public final void join() throws InterruptedException;
public final native boolean isAlive();

public void destroy();
// throws SecurityException;
public final void stop();
// throws SecurityException --- DEPRECIATED

public final void setDaemon();
// throws SecurityException, IllegalThreadStateException
public final boolean isDaemon();
// Note, RuntimeExceptions are not listed as part of the
// method specification. Here, they are shown as comments

}

The Java class thread



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 22

Robot Arm Example
public class Control extends Thread
{

private int dim;

public Control(int Dimension) // constructor
{

super();
dim = Dimension;

}

public void run()
{

int position = 0;
int setting;

while(true)
{

Robot.move(dim, position);
setting = UI.newSetting(dim);
position = position + setting;

}
}

}



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 23

Robot Arm Example cont.

final int xPlane = 0; // final indicates a constant
final int yPlane = 1;
final int zPlane = 2;

Control C1 = new Control(xPlane);
Control C2 = new Control(yPlane);
Control C3 = new Control(zPlane);

C1.start(); // threads started
C2.start();
C3.start();



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 24

Alternative Robot Control
public class Control implements Runnable
{

private int dim;

public Control(int Dimension) // constructor
{

dim = Dimension;
}

public void run()
{

int position = 0;
int setting;

while(true)
{

Robot.move(dim, position);
setting = UI.newSetting(dim);
position = position + setting;

}
}

}



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 25

Alternative Robot Control cont.

final int xPlane = 0;
final int yPlane = 1;
final int zPlane = 2;

Control C1 = new Control(xPlane); // no thread created yet
Control C2 = new Control(yPlane);
Control C3 = new Control(zPlane);

// constructors passed a Runnable interface and threads created
Thread X = new Thread(C1);
Thread Y = new Thread(C2);
Thread Z = new Thread(C2);

X.start(); // thread started
Y.start();
Z.start();



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 26

Java Thread States

deadblocked

non-existing

new

executable

Create thread object 

Start

Run method exits
Stop, Destroy



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 27

Points about Java Threads

Allows dynamic thread creation
Allows arbitrary data to be passed as parameters
Allows thread hierarchies and thread groups

No master or guardian concept
Java relies on garbage collection to clean up objects 
which can no longer be accessed

The main program in Java terminates when all its 
user threads have terminated
join method:

Thread waits for other thread (the target) to terminate
isAlive method:

Determines if the target thread has terminated



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 28

A Thread Terminates:

... when it completes execution of its run method
either normally, or
as the result of an unhandled exception

... by its destroy method being called
destroy terminates the thread without any cleanup
never been implemented in the JVM

... via its stop method (depreciated)
inherently unsafe as it releases locks on objects and can 
leave those objects in inconsistent states



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 29

Thread Exceptions

The IllegalThreadStateException is 
thrown when:

the start method is called and the thread has already 
been started
 the setDaemon method has been called and the thread 
has already been started

The SecurityException is thrown by the 
security manager when:

a stop or destroy method has been called on a thread 
for which the caller does not have the correct permissions 
for the operation requested



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 30

Thread Exceptions

NullPointerException:
When a null pointer is passed to the stop method

InterruptException:
When a thread which has issued a join method is woken 
up by the thread being interrupted rather than the target 
thread terminating 



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 31

Concurrent Execution in POSIX

Provides two mechanisms: fork and pthreads.
fork creates a new process
pthreads are an extension to POSIX to allow threads 
to be created
All threads have attributes (e.g. stack size)
To manipulate these you use attribute objects
Threads are created using an appropriate attribute 
object



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 32

typedef ... pthread_t; /* details not defined */
typedef ... pthread_attr_t;

int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);

int pthread_attr_setstacksize(..);
int pthread_attr_getstacksize(..);

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg);

/* create thread and call the start_routine with the argument */

int pthread_join(pthread_t thread, void **value_ptr);
int pthread_exit(void *value_ptr);

/* terminate the calling thread and make the pointer value_ptr
available to any joining thread */

pthread_t pthread_self(void);

Typical C POSIX interface

All functions return 0 if successful, 
otherwise an error number



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 33

#include <pthread.h>

pthread_attr_t attributes;
pthread_t xp, yp, zp;

typedef enum {xplane, yplane, zplane} dimension;

int new_setting(dimension D);
void move_arm(int D, int P);

void controller(dimension *dim)
{

int position, setting;

position = 0;
while (1) {

setting = new_setting(*dim);
position = position + setting;
move_arm(*dim, position);

};
/* note, process does not terminate */

}

Robot Arm in C/POSIX



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 34

int main() {
dimension X, Y, Z;
void *result;

X = xplane,
Y = yplane;
Z = zplane;
PTHREAD_ATTR_INIT(&attributes);
/* set default attributes */

PTHREAD_CREATE(&xp, &attributes, (void *)controller, &X);
PTHREAD_CREATE(&yp, &attributes, (void *)controller, &Y);
PTHREAD_CREATE(&zp, &attributes, (void *)controller, &Z);
PTHREAD_JOIN(xp, &result);
/* need to block main program */

exit(-1); /* error exit, the program should not terminate */
}

Robot Arm in C/POSIX

Need join as when a process terminates, 
all its threads are forced to terminate

SYS_CALL style indicates a call to
sys_call with a check for error returns



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 35

Threads in legOS

A legOS thread is basically a memory area reserved 
on the stack and some allotted CPU time
Similar to POSIX.1c threads
Initially, there exist two threads:

the program manager
the energy manager



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 36

Thread Creation

Priority is fixed during existence of the thread
Warning: the stack_size has to be made sufficiently 
large – otherwise arbitrary memory areas can be 
overwritten (a favorite cause of program crashes)

pid_t execi(int (*code_start) (int, char**),
int argc,
char **argv,
priority_t priority,
size_t stack_size)



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 37

Further Thread Functions

// Makes rest of time slice available to
// other threads
void yield()

// Finishes thread with given return value
void exit(int retval)

// Terminates thread pid, as if this
// had called exit(-1)
void kill(pid_t pid)

// Terminates all threads with priority < p
void killall(priority_t p)



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 38

Suspending Threads

wakeup_t wait_event(wakeup_t(*wakeup)(wakeup_t),
wakeup_t data)

// Example usage:
wait_event(dkey_pressed, KEY_ANY);

Threads can specify a wake-up function that is tested 
each time a time-slice for the thread starts
The thread becomes activated iff the wake-up function 
returns a non-zero value
Should try to keep wake-up functions small – these are 
executed by the scheduler itself



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 39

Multiple Task Example I

The following program consists of two tasks:
#include "conio.h"
#include "direct-button.h"
#include "unistd.h"
#include "sys/tm.h"

pid_t pid;

int display_task(int argc, char **argv) {
while(1) {

cputs("Hello");
lcd_refresh();
sleep(1);
cputs("nurse");
lcd_refresh();
sleep(1);

}
return 0;

}



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 40

Multiple Task Example II

int stop_task(int argc, char **argv) {
msleep(200);
while (!PRESSED(button_state(), BUTTON_RUN))

;
kill(pid);
return 0;

}

int main() {
pid = execi(&display_task, 0, NULL, 0,

DEFAULT_STACK_SIZE);
execi(&stop_task, 0, NULL, 0, DEFAULT_STACK_SIZE);

return 0;
}



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 41

Where to Specify Concurrency ?

There is a debate over whether a language should 
define concurrency (or leave it up to the OS)
Pro (Ada, Java):

Increases readability and maintainability
Improves portability across OSs
An OS may not be available to embedded computer

Con (C, C++):
Makes combination of different languages more difficult
May be difficult to implement on top of an OS
Emerging OS standards improve portability

Integrated Modular Avionics APEX defines interface



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 42

Summary I
The application domains of most real-time systems 
are inherently parallel
The inclusion of the notion of process within a real-
time programming language makes an enormous 
difference to its expressive power and ease of use
Without concurrency the software must be 
constructed as a single control loop 

The structure of this loop cannot retain the logical 
distinction between systems components
It is particularly difficult to give process-oriented timing 
and reliability requirements without the notion of a 
process being visible in the code



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 43

Summary II

The use of a concurrent programming language 
requires a run-time support system to manage 
process execution
Processes have several states: 

non-existing
created
initialized
executable
waiting dependent termination
waiting child initialization
terminated



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 44

Summary III

A process model is characterized by its:
Structure 

static
dynamic 

Level 
top level processes only (flat)
multilevel (nested)

Initialization 
with or without parameter passing

Granularity
fine grain
coarse grain



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 45

Summary IV

A process model is further characterized by its:
Termination 

Natural
Suicide
Abortion
Untrapped error
Never

Representation 
Coroutines
Fork/join
Cobegin
Explicit process declarations



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 46

Ada, Java and C/POSIX

Ada and Java provide a dynamic model with support 
for nested tasks and a range of termination options
Ada implements a guardian/dependent relationship 
(the master block); Java relies on garbage collection
POSIX allows dynamic threads to be created with a 
flat structure

threads must explicitly terminate or be killed. 



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 47

Problem Set 9 – Due: 26 June 2002
1.) To what extent can the Ada process state transition diagram be applied to processes in 

Java and in C/POSIX? (2 pts)

2.) Modify the robot built last week such that it concurrently performs the following 
tasks:

a) Check for crossings of dark lines
b) Check for obstacles on the way
c) Check whether a button is pressed
d) Check whether a pre-defined time-out occurs (1 minute)
The robot should be halted whenever a crossed line is thicker than 10cm, or an obstacle is 
encountered, or a button is pressed, or the time-out occurs; in each case a different alarm 
should sound.
You should provide two versions of the controller:
1) In C – using the threads provided by LegOS
2) In Java – using for example lejos (see http://www.informatik.uni-

kiel.de/~kwi/programmierung/lejos.html)
a) Documentation (overview of approach and assumptions, commented source code, 

measurement of accuracy)
(2x3 pts)

b) Functional robot (2x3 pts)



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 48

T

S

P

A Simple Embedded System

The objective is to keep the temperature and pressure 
of a chemical process within well-defined limits

Switch

ADC

ADC

DACScreen

Heater

Thermocouples Pressure 

Transducer

Pump/Valve



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 49

Possible Software Architectures

A single program is used which ignores the logical 
concurrency of T, P and S

No operating system support is required
T, P and S are written in a sequential programming 
language (either as separate programs or distinct 
procedures in the same program) and OS primitives 
are used for program/process creation and interaction
A single concurrent program is used which retains 
the logical structure of T, P and S

No operating system support is required
A run-time support system is needed

Which is the best approach?



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 50

package Data_Types is
type Temp_Reading is new Integer range 10..500;
type Pressure_Reading is new Integer range 0..750;
type Heater_Setting is (On, Off);
type Pressure_Setting is new Integer range 0..9;

end Data_Types;

with Data_Types; use Data_Types;
package IO is

procedure Read(TR : out Temp_Reading); -- from ADC
procedure Read(PR : out Pressure_Reading);
procedure Write(HS : Heater_Setting); -- to switch
procedure Write(PS : Pressure_Setting); -- to DAC
procedure Write(TR : Temp_Reading); -- to screen
procedure Write(PR : Pressure_Reading);-- to screen

end IO;

Useful Packages

Necessary 
type 
definitions

Procedures 
for data 
exchange 
with the 
environment



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 51

Control Procedures

with Data_Types; use Data_Types;
package Control_Procedures is
-- Procedures for converting a reading into
-- an appropriate setting for output
procedure Temp_Ctrl(TR : Temp_Reading;

HS : out Heater_Setting);
procedure Pressure_Ctls(PR : Pressure_Reading;

PS : out Pressure_Setting);
end Control_Procedures;



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 52

Sequential Solution

with Data_Types; use Data_Types; with IO; use IO;
with Control_Procedures; use Control_Procedures;

procedure Controller is
TR : Temp_Reading;
PR : Pressure_Reading;
HS : Heater_Setting;
PS : Pressure_Setting;

begin
loop -- infinite loop

Read(TR); -- from ADC
Temp_Ctrl(TR,HS);
Write(HS); -- to switch
Write(TR); -- to screen
Read(PR);
Pressure_Ctrl(PR,PS);
Write(PS);
Write(PR);

end loop;
end Controller;

No OS 
required !



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 53

Disadvantages of the Sequential Solution

Temperature and pressure readings must be taken at 
the same rate
The use of counters and if statements would improve 
the situation
But may still be necessary to split up the conversion 
procedures Temp_Ctrl and Pressure_Ctrl, 
and interleave their actions to balance work
While waiting to read a temperature no attention can 
be given to pressure (and vice versa) 
A system failure that results in, e.g., control never 
returning from the temperature Read would also 
block the rest of the controller



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 54

An Improved System

with Data_Types; use Data_Types; with IO; use IO;
with Control_Procedures; use Control_Procedures;
procedure Controller is

TR : Temp_Reading; PR : Pressure_Reading;
HS : Heater_Setting; PS : Pressure_Setting;
Ready_Temp, Ready_Pres : Boolean;

begin
loop

if Ready_Temp then
Read(TR); Temp_Convert(TR,HS);
Write(HS); Write(TR);

end if;
if Ready_Pres then
Read(PR); Pressure_Convert(PR,PS);
Write(PS); Write(PR);

end if;
end loop;

end Controller;

What is 
wrong with 
this ?



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 55

Problems

The solution is more reliable
Unfortunately the program now spends a high 
proportion of its time in a busy loop polling the input 
devices to see if they are ready
Busy-waits are unacceptably inefficient
Moreover programs that rely on busy-waiting are 
difficult to design, understand or prove correct
This approach still does not express the 
concurrency between the temperature and the 
pressure controller !



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 56

package OSI is
type Thread_ID is private;
type Thread is access procedure;

function Create_Thread(Code : Thread)
return Thread_ID;

-- other subprograms
procedure Start(ID : Thread_ID);

private
type Thread_ID is ...;

end OSI;

Using O.S. Primitives I



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 57

package Processes is
procedure Temp_C;
procedure Pressure_C;

end Processes;

with IO; use IO;
with Control_Procedures;
use Control_Procedures;
package body Processes is
procedure Temp_C is
TR : Temp_Reading;
HS : Heater_Setting;

begin
loop
Read(TR); Temp_Convert(TR,HS);
Write(HS); Write(TR);

end loop;
end Temp_C;

Using O.S. Primitives II
procedure Pressure_C is
PR : Pressure_Reading;
PS : Pressure_Setting;

begin
loop
Read(PR);
Pressure_Convert(PR,PS);
Write(PS);
Write(PR);

end loop;
end Pressure_C;

end Processes;



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 58

Using O.S. Primitives III

with OSI, Processes; use OSI, Processes;
procedure Controller is
TC, PC : Thread_ID;

begin
TC := Create_Thread(Temp_C'Access);
PC := Create_Thread(Pressure_C'Access);

Start(TC);
Start(PC);

end Controller;

Better, 
more 
reliable 
solution

For realistic OS, 
solution becomes 
unreadable !



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 59

task Pressure_Controller;
task body Pressure_Controller is

PR : Pressure_Reading;
PS : Pressure_Setting;

begin
loop

Read(PR);
Pressure_Convert(PR,PS);
Write(PS); Write(PR);

end loop;
end Pressure_Controller;

Ada Tasking Approach
with Data_Types; use Data_Types;
with IO; use IO;
with Control_Procedures;
use Control_Procedures;
procedure Controller is
task Temp_Controller;
task body Temp_Controller is

TR : Temp_Reading;
HS : Heater_Setting;

begin
loop

Read(TR);
Temp_Convert(TR,HS);
Write(HS); Write(TR);

end loop;
end Temp_Controller;

begin
null;

end Controller;



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 60

Advantages of Concurrent Approach

Controller tasks execute concurrently and each 
contains an indefinite loop within which the control 
cycle is defined
While one task is suspended waiting for a read the 
other may be executing
If both tasks are suspended there is no busy loop
The logic of the application is reflected in the code; 
the inherent parallelism of the domain is represented 
by concurrently executing tasks in the program



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_18.sdd Foil 61

Disadvantages

Both tasks send data to the screen, but the screen is a 
resource that can only sensibly be accessed by one 
process at a time
A third entity is required. This has transposed the 
problem from that of concurrent access to a non-
concurrent resource to one of resource control
It is necessary for controller tasks to pass data to the 
screen resource
The screen must ensure mutual exclusion
The whole approach requires a run-time support 
system


