Real-Time Systems Programming

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Summer-Semester 2002
Lecture 18
14 June 2002

q Concarvent Programming cont

"

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 1

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

e Concurrency in
> Ada (tasks)

> Java (threads)
> POSIX/C (processes and threads)
> LegOS

® Where to specify concurrency?

® A simple embedded system

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd

Contents

Foil 2

Concurrency in Ada

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The unit of concurrency in Ada 1s called a rask

® Tasks must be explicitly declared
> No fork/join statement, COBEGIN/PAR etc

® Tasks may be declared at any program level

® Tasks are created
> implicitly upon entry to the scope of their declaration, or
> via the action of an allocator

® Tasks may communicate and synchronise via a
variety of mechanisms:
> Rendezvous (a form of synchronised message passing)
> Protected units (a monitor/conditional critical region)
> Shared variables

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 3

Ada Example Task Structure

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

task type Server (lnit : Paraneter) is . .
entry Service; Speczﬁcatton
end Server;

task body Server is
begi n

éééept Service do
Body

-- Sequence of statenents;

end Servi ce;

end Server:;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 4

® A task can be declared as a fype or as a single
instance (anonymous type)

® A task type consists of a specification and a body
® The specification contains
> the type name

> an optional discriminant part which defines
parameters

> a visible part defining entries and representation
clauses

> a private part defining hidden entries and
representation clauses

Ada Example Task Specifications

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

task type Controll er; This task type has no entries;
‘\
no other tasks can

communicate directly

task type Agent(Param : |nteger);

- Task objects can be passed
an integer parameter at

their creation time

The number of the pump to
be served is passed at task
task type Garage Attendant (—a— creation time; if no value is
Pump @ Punp_Nunber := 1) is passed a default of 1 is used
entry Serve Leaded(G: @Gllons);
entry Serve_ Unl eaded(G : Gallons);
end Garage_ Attendant;

Objects will allow
communication via two

entries

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 5

Creation of Ada Tasks

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Can use array to create multiple instances

® Can create dynamic number of tasks via
> giving non-static task array bounds — or

> by using the new operator

Main_Controller : Controller;
Attendantl : Garage_Attendant (2);

type Garage Forecourt is array (1 .. 10) of Garage Attendant;
GF : Garage_Forecourt;

type One Punp Garage(Punp : Punp_ Nunber := 1) is
record
P : Garage_Attendant (Punp);
C : Cashier(Pum);
end record;
OPG : One_Punp_Garage(4);

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 6

Ada: Robot Arm Example

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

type Dinension is (Xplane, Yplane, Zplane),;
task type Control (Dim: D nension);

Cl : Control (Xpl ane);

C2 : Control (Ypl ane);

C3 : Control (Zpl ane);

task body Control is

Position : Integer; -- absol ute position
Setting : Integer; -- relative novenent
begi n
Position : = 0; -- rest position
| oop
New Setting (Dim Setting);
Position := Position + Setting;
Move Arm (Dim Position);
end | oop;
end Control;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 7

An Ada Procedure with Two Tasks

GOV LUUUULULLUUUULLULLLLLLLL

task A;
task B;

begi n

end A

begi n

end B;
begi n

procedure Exanplel is

task body A is
-- | ocal declarations for task A

-- sequence of statenent for task A
task body B is
-- local declarations for task B
-- sequence of statenments for task B
-- tasks A and B start their executions before
-- the first statenent of the procedure’ s sequence

-- of statenents.

end Exanpl el; -- the procedure does not term nate

-- until tasks A and B have
-- term nated

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 8

Activation, Execution & Finalisation

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

The execution of an Ada task object has three main phases:

® Activation

> The elaboration of the declarative part, if any, of the task
body

> Any local variables of the task are created and initialized
during this phase

> In other languages called initialization

® Normal Execution
> Execution of the statements within the body of the task

® Finalization
> Execution of any finalization code associated with any
objects 1in its declarative part

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 9

Ada Task Activation

LU LLLULLULLOLUULULULLUOUULELLLLLLLLL

A 1s created when its
decl are declaration is elaborated
task type T.T ;
task A;

B, C: T Typel,; B and C are created

task body Ais ...7 when their declarations
are elaborated

task body T Typel is
begi n\ Tasks are activated

when elaboration is
finished

L

end;.

i

First statement executes
once all tasks have
finished their activation

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 10

® All static tasks created within a single declarative
region begin their activation immediately after the
region has elaborated

® The first statement following the declarative region is
executed after all tasks have finished their activation

® Following activation:

» Execution of the task object 1s defined by the
appropriate task body

® A task need not wait for the activation of other task
objects before executing its body

® A task may attempt to communicate with another task
once that task has been created

» Calling task 1s delayed until the called task 1s ready

Task States in Ada

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

[non-existing } { non-existing }
Elaboration of Exgepltiont(aised Out of
declarative part g’a rtec arative scope
[created J { terminated |
Finalization
complete
Elaboration —
successful [finalizing J
4
Exception raised in task
— activation
L activating } completed]
Activation l
successful Completion of task
. executable body

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 11

® [f an exception is raised in the elaboration of a

declarative part.
> No tasks created during that elaboration is activated,
and instead will be terminated

® If an exception is raised during a task's activation:

» Task becomes completed or terminated and the
predefined exception Taski ng_Err or israised

prior to the first executable statement of the
declarative block (or after the call to the allocator)

> This exception i1s raised just once

® The raise will wait until all currently activating tasks
finish their activation

Ada: Creation and Hierarchies

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Recall: The parent of a task is responsible for the
creation of a child

® When a parent task creates a child:
> Must wait for the child to finish activating

® This suspension occurs

> Immediately after the action of the allocator (operator
new), or

> After it finishes elaborating the associated declarative part

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 12

Termination and Hierarchies

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Recall: The master of a dependent task must wait for
the dependent to terminate before itself can terminate

® [n many cases the parent 1s also the master

task Parent And_Mast er;

task body Parent And Master is
task Chil d_And_Dependent;
task body Child And _Dependent is
begin ... end;

begi n

end Qr ent And_ Master;

Par ent _And_Mast er becomes completed,; it
terminates when Chi | d_And_Dependent
terminates

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 13

Master Blocks

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

declare -- internal MASTER bl ock
-- declaration and initialisation of |ocal variables
-- declaration of any finalisation routines
t ask Dependent;

task body Dependent is begin ... end;
begi n -- MASTER bl ock
endi. -- MASTER bl ock

® The task executing the master block creates
Dependent and therefore is its parent

® However, it 1s the MASTER block which cannot
exit until the Dependent has terminated (not the

parent task)

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 14

Termination and Dynamic Tasks

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Master of a task created by an allocator:
> Declarative region containing access type definition

decl are
task type Dependent;
type Dependent Ptr is access Dependent;
A : Dependent Ptr;

task body Dependent is begin ... end,
begi n
déélare

B : Dependent;
C : Dependent Ptr := new Dependent;

begi n))
A:=C Must wait for B to terminate but not C. al | ;
end; C. al | could still be active although the name

end;

C. al | is out of scope; the task can still be

Qccessed via A

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 15

Task Termination

s
A task terminates when
® it finishes execution of its body

> normally, or

> as the result of an unhandled exception

® it executes at er m nat e alternative of a select

statement (see later), thereby implying that it is no
longer required.

® 1t 1s aborted

® all i1s dependents have terminated

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 16

Unhandled Exceptions
® The effect of an unhandled exception in a task is
isolated to just that task

® Another task can inquire (by the use of an attribute)
if a task has terminated

® However, the enquiring task cannot differentiate
between normal or error termination of the other
task.

i f T Term nated then
-- for sone task T
-- error recovery action

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 17

Task Abortion

GLUULLULLLLULLLUULLULLUULULLLLLLLLLG G
® Any task can abort any other task whose name 1s in
scope
® When a task 1s aborted all its dependents are also
aborted

® The abort facility allows wayward tasks to be
removed

e [f, however,a rogue task is anonymous then it cannot
be named and hence cannot easily be aborted
How could you abort it?

® |t is desirable, therefore, that only terminated tasks
are made anonymous

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 18

Task States in Ada

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

(non-existing } non-existing]

A

A

" created | —— terminated

J A

Y finalizing
activating

. J

A

Create child task completed

Y

J

Exit a

waiting child master Dependent tasks

activation block terminate
Child task _
activation waiting dependent
complete termination

Exit a
master
block

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 19

executable

Concurrency in Java

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

e Predefined class | ava. | ang. Thr ead
> Provides thread/process creation mechanism

® To avoid all threads having to be child classes of
Thr ead:
» Standard interface
public interface Runnable {
public abstract void run();

}

® Hence, any class which wishes to express concurrent
execution must
> Implement this interface
> Provide the r un method

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 20

The Java class t hr ead

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

public class Thread extends Object inplenents Runnabl e
{
public Thread();
publ i ¢ Thread(Runnabl e target);

public void run();
public native synchronized void start();
/1 throws |Il1egal ThreadSt at eExcepti on

public static Thread current Thread();
public final void join() throws InterruptedException;
public final native bool ean isAlive();

public void destroy();
/1l throws SecurityException;
public final void stop();

[l throws SecurityException --- DEPRECI ATED
public final void setDaenon();
/[l throws SecurityException, |l egal ThreadStat eExcepti on

public final bool ean i sDaenon();
/1l Note, RuntinmeExceptions are not listed as part of the
/1 method specification. Here, they are shown as conments

}

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 21

Robot Arm Example

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

{

}

public class Control extends Thread

private int dim

public Control (int D nension) // constructor
{

super () ;

di m = D nensi on

}

public void run()

{
int position = O;
int setting;

whi | e(true)
{
Robot . nove(dim position);
setting = U .newSetting(din;
position = position + setting;
}
}

R. v. Hanxleden

SS 2002 — Real-11me Systems Programming — Lecture_1¥.sdd

Foil 22

Robot Arm Example cont.

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

final int xPlane
final int yPlane
final int zPl ane

O; [// final indicates a constant

noa
> E

Control Cl = new Control (xPl ane);
Control C2 = new Control (yPl ane) ;
Control C3 = new Control (zPl ane) ;
Cl.start(); // threads started
C2.start();

C3.start();

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 23

R. v. Hanxleden

Alternative Robot Control

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

public class Control inplenents Runnabl e

{
private int dim

public Control (int Dinension) [// constructor

{
di m = Di mensi on;
}
public void run()
{
int position = 0;
int setting;
whi | e(true)
{
Robot . nove(di m position);
setting = U .newSetting(dim;
position = position + setting;
}
}

SS 2002 — Real-Time Systems Programming — Lecture 18.sdd

Foil 24

Alternative Robot Control cont.

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

final int xPlane
final int yPlane
final int zPl ane

Control C1
Control C2
Control C3

/'l constructors passed a Runnable interface and threads created

Thread X
Thread Y
Thread Z

X.start();
Y.start();
Z. start();

/!l thread started

0;
1;
2

new Control (xPlane); // no thread created yet
new Control (yPl ane);
new Control (zPl ane);

new Thread(Cl);
new Thread(C2);
new Thread(C2);

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 25

Java Thread States

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

(non-existing J

l Create thread object

L new }

l Start

executable Run method exits

Stop, Destroy

_ blocked | | dead |

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 26

Points about Java Threads

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Allows dynamic thread creation
® Allows arbitrary data to be passed as parameters
® Allows thread hierarchies and thread groups

> No master or guardian concept

> Java relies on garbage collection to clean up objects
which can no longer be accessed

® The main program in Java terminates when all its
user threads have terminated

® | 0OI N method:

> Thread waits for other thread (the target) to terminate
e | SAl I ve method:

> Determines if the target thread has terminated

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 27

A Thread Terminates:

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

e ... when 1t completes execution of its I un method
> either normally, or

> as the result of an unhandled exception

e ... byits dest r oy method being called

> destroy terminates the thread without any cleanup

> never been implemented in the JVM

e ... viaits St op method (depreciated)

> inherently unsafe as it releases locks on objects and can
leave those objects in inconsistent states

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 28

Thread Exceptions
e Thel |l | egal ThreadSt at eExcepti onis
thrown when:

> the st ar t method is called and the thread has already
been started

» the set Daenon method has been called and the thread
has already been started
e The Secur i t yExcept i on is thrown by the
security manager when:

> astopordestroy method has been called on a thread

for which the caller does not have the correct permissions
for the operation requested

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 29

Thread Exceptions

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

e Nul | Poi nt er Excepti on:
> When a null pointer is passed to the St op method
e | nterrupt Excepti on:

> When a thread which has issued a | 0i N method is woken

up by the thread being interrupted rather than the target
thread terminating

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 30

Concurrent Execution in POSIX

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Provides two mechanisms: fork and pthreads.
® fork creates a new process

® pthreads are an extension to POSIX to allow threads
to be created

e All threads have attributes (e.g. stack size)
® To manipulate these you use attribute objects

® Threads are created using an appropriate attribute
object

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 31

Typical C POSIX interface

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

typedef ... pthread t; /[/* details not defined */
typedef ... pthread_attr _t;

int pthread attr_init(pthread_attr_t *attr);
int pthread attr _destroy(pthread attr_t *attr);

int pthread attr_setstacksize(..);
int pthread_attr_getstacksize(..);

int pthread create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start _routine)(void *), void *arg);
[* create thread and call the start_routine with the argunment */

int pthread join(pthread_t thread, void **val ue_ptr);
int pthread exit(void *value_ptr);
/* terminate the calling thread and nmake the pointer value_ptr
avail able to any joining thread */

pthread t pthread sel f(void); . .
All functions return 0 if successful,

otherwise an error number

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 32

Robot Arm in C/POSIX

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

#i ncl ude <pt hread. h>

pthread_attr_t attributes;
pthread_t xp, yp, zp;

t ypedef enum {xpl ane, yplane, zplane} di nension;

int new setting(di nension D);
void nove arm(int D, int P);

void controll er(di mension *dim

{

int position, setting;

position = O;

while (1) {
setting = new setting(*dim;
position = position + setting;
nmove_arnm(*di m position);

3
/* note, process does not termnate */

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 33

Robot Arm in C/POSIX

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

int main() {

dirension X, Y, zz | SYS_CALL style indicates a call to

void *result;

X = xpl ane,
Y = ypl ane;
Z = zpl ane;

sys_cal | with a check for error returns

PTHREAD ATTR | NI T(&attri butes);
[* set default attributes */

PTHREAD CREATE(&xp, &attributes, (void *)controller, &X);
PTHREAD CREATE(&yp, &attributes, (void *)controller, &Y);
PTHREAD CREATE(&p, &attributes, (void *)controller, &2);

PTHREAD JO N(xp, &result);
/* need to bl ock main program */

exit(-1); /* error exit, the program should not term nate */

Need | 0i N as when a process terminates,
all its threads are forced to terminate

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd

Foil 34

Threads in legOS

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® A legOS thread is basically a memory area reserved
on the stack and some allotted CPU time

® Similar to POSIX. Ic threads

® [nitially, there exist two threads:

> the program manager

> the energy manager

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 35

Thread Creation

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

pid t execi(int (*code start) (int, char**),
I nt argc,
char **argv,
priority t priority,
Size_t stack _size)

® Priority is fixed during existence of the thread

® Warning: the stack size has to be made sufficiently
large — otherwise arbitrary memory areas can be
overwritten (a favorite cause of program crashes)

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 36

Further Thread Functions

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

/] Makes rest of tine slice available to
/] other threads
voi d yi el d()

/'l Finishes thread with given return val ue
void exit(int retval)

// Term nates thread pid, as if this
/1 had called exit(-1)
void kill(pid t pid)

I/ Term nates all threads with priority <p
void killall(priority_t p)

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd

Foil 37

Suspending Threads

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Threads can specify a wake-up function that is tested
each time a time-slice for the thread starts

® The thread becomes activated iff the wake-up function
returns a non-zero value

® Should try to keep wake-up functions small — these are
executed by the scheduler itself

wakeup_ t wait_ event (wakeup_t (*wakeup) (wakeup_t),
wakeup t dat a)

/| Exanpl e usage:
wait _event (dkey pressed, KEY_ANY);

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 38

Multiple Task Example 1

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The following program consists of two tasks:

#1 ncl ude "coni o. h"
#1 ncl ude "direct-button.h"
#1 ncl ude "uni std. h"
#i ncl ude "sys/tm h"

pid_t pid;

I nt display task(int argc, char **argv) {
while(1l) {
cputs("Hello");
| cd refresh();
sl eep(l);
cput s("nurse");
| cd_refresh();
sl eep(1);
}

return O;

}

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 39

Multiple Task Example 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

int stop task(int argc, char **argv) {
nel eep(200);
whi |l e (! PRESSED(button_state(), BUTTON_RUN))

Ki 1l (pid):
return O;

}

int main() {
pid = execi (&di splay task, 0, NULL, O,
DEFAULT _STACK Sl ZE) ;
execi (&stop _task, 0O, NULL, 0, DEFAULT STACK SI ZE);

return O;

}

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 40

Where to Specify Concurrency ?

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® There 1s a debate over whether a language should
define concurrency (or leave it up to the OS)

® Pro (Ada, Java):

> Increases readability and maintainability
> Improves portability across OSs
> An OS may not be available to embedded computer
® Con (C, C++):
> Makes combination of different languages more difficult
> May be difficult to implement on top of an OS
» Emerging OS standards improve portability

® [ntegrated Modular Avionics APEX defines interface

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 41

Summary 1
® The application domains of most real-time systems
are inherently parallel

® The inclusion of the notion of process within a real-
time programming language makes an enormous
difference to its expressive power and ease of use

e Without concurrency the software must be

constructed as a single control loop
> The structure of this loop cannot retain the logical
distinction between systems components

> It 1s particularly difficult to give process-oriented timing
and reliability requirements without the notion of a
process being visible in the code

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 42

Summary 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The use of a concurrent programming language
requires a run-time support system to manage
process execution

® Processes have several states:
> non-existing

> created

> 1nitialized

> executable

> waiting dependent termination
> waiting child initialization

> terminated

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 43

Summary I11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

A process model 1s characterized by its:
® Structure

> static

» dynamic
® [evel

> top level processes only (flat)

> multilevel (nested)
® [nitialization

> with or without parameter passing
® Granularity

> fine grain

> coarse grain

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 44

Summary IV

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

A process model 1s further characterized by its:

® Termination
> Natural
> Suicide
> Abortion
> Untrapped error
> Never
® Representation
> Coroutines
> Fork/join
> Cobegin
> Explicit process declarations

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 45

Ada, Java and C/POSIX

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Ada and Java provide a dynamic model with support
for nested tasks and a range of termination options

® Ada implements a guardian/dependent relationship
(the master block); Java relies on garbage collection

® POSIX allows dynamic threads to be created with a

flat structure
> threads must explicitly terminate or be killed.

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 46

Problem Set 9 — Due: 26 June 2002

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

1.) To what extent can the Ada process state transition diagram be applied to processes in
Java and in C/POSIX? (2 pts)

2.) Modify the robot built last week such that it concurrently performs the following
tasks:

a) Check for crossings of dark lines

b) Check for obstacles on the way

c) Check whether a button is pressed

d) Check whether a pre-defined time-out occurs (1 minute)

The robot should be halted whenever a crossed line is thicker than 10cm, or an obstacle 1s
encountered, or a button is pressed, or the time-out occurs; in each case a different alarm
should sound.

You should provide two versions of the controller:
1) In C — using the threads provided by LegOS

2) In Java — using for example lejos (see http://www.informatik.uni-
kiel.de/~kwi/programmierung/lejos.html)

a) Documentation (overview of approach and assumptions, commented source code,
measurement of accuracy)

(2x3 pts)
b) Functional robot (2x3 pts)

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 47

A Simple Embedded System

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Thermocouples —> ADC Pressure

/ Transducer
/ P ADC

A

[Switch
Heater

/ '

Screen DAC ——— Pump/Valve

® The objective 1s to keep the temperature and pressure
of a chemical process within well-defined limits

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 48

Possible Software Architectures
® A single program is used which ignores the logical

concurrency of T, P and S
> No operating system support is required

® T, P and S are written in a sequential programming
language (either as separate programs or distinct
procedures in the same program) and OS primitives
are used for program/process creation and interaction

® A single concurrent program is used which retains

the logical structure of T, P and S
> No operating system support is required

> A run-time support system is needed

Which is the best approach?

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 49

Useful Packages

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

package Data_Types is
type Tenp_Reading is new I nteger range 10..500; N€C€SSCZK)/
type Pressure_Reading is new I nteger range 0..750; ty e
type Heater Setting is (On, Of); P L
type Pressure_Setting is new Integer range 0..9; deﬁnltzons

end Dat a_Types;

with Data Types; use Data_Types;

package 10 is Procedures
procedure Read(TR : out Tenp_Reading); -- from ADC
procedure Read(PR : out Pressure_Reading); fOlf' data
procedure Wite(HS : Heater_Setting); -- to switch exchange
procedure Wite(PS : Pressure_Setting); -- to DAC ;
procedure Wite(TR : Tenp_Reading); -- to screen Wlﬂ? the
procedure Wite(PR : Pressure_Reading);-- to screen | environment

end 1O

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 50

Control Procedures

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

with Data_Types; use Data_Types;
package Control Procedures is

-- Procedures for converting a reading into

-- an appropriate setting for output

procedure Tenp Cirl (TR : Tenp_Readi ng;

HS : out Heater_ Setting);
procedure Pressure Ctls(PR : Pressure_ Readi ng;
PS : out Pressure Setting);

end Control Procedures;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 51

Sequential Solution

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

with Data_Types; use Data_Types; with IO use IO
with Control Procedures; use Control Procedures;

procedure Controller is
TR : Tenp_Readi ng;
PR : Pressure_Readi ng;
HS : Heater_Setting;

PS : Pressure_Setting;
begi n No QS
loop -- infinite | oop requlred /
Read(TR) ; -- from ADC
Tenp_Ctrl (TR, HS) ;
Wite(HS); -- to switch
Wite(TR); -- to screen
Read(PR) ;
Pressure_Cirl (PR PS);
Wite(PS);
Wite(PR);
end | oop;
end Controller;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 52

Disadvantages of the Sequential Solution

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Temperature and pressure readings must be taken at
the same rate

® The use of counters and if statements would improve
the situation

® But may still be necessary to split up the conversion
procedures Tenp Cirl and Pressure Cirl,
and interleave their actions to balance work

® While waiting to read a temperature no attention can
be given to pressure (and vice versa)

® A system failure that results in, e.g., control never
returning from the temperature Read would also

block the rest of the controller

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 53

An Improved System

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

with Data_ Types; use Data_Types; with IO use IO
wi th Control _Procedures; use Control _Procedures;
procedure Controller is

TR : Tenp_Readi ng; PR : Pressure_Readi ng;

HS : Heater_Setting; PS : Pressure_Setting;

Ready Tenp, Ready Pres : Bool ean;

begi n
| oop
i f Ready_Tenp then -
Read(TR); Tenp_Convert (TR, HS); What is
Wite(HS); Wite(TR); wrong with
end if; this ?
i f Ready_Pres then 1§

Read(PR); Pressure_Convert (PR PS);
Wite(PS); Wite(PR);
end if;
end | oop;
end Controller;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 54

Problems

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® The solution 1s more reliable

® Unfortunately the program now spends a high
proportion of its time in a busy loop polling the imnput
devices to see if they are ready

® Busy-waits are unacceptably inefficient

® Moreover programs that rely on busy-waiting are
difficult to design, understand or prove correct

® This approach still does not express the
concurrency between the temperature and the
pressure controller !

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 55

Using O.S. Primitives 1

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

package OSI is
type Thread ID is private;
type Thread is access procedure;

function Create Thread(Code : Thread)
return Thread | D
-- ot her subprograns
procedure Start(ID : Thread |D);
private
type Thread IDis ...
end OSI;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 56

Using O.S. Primitives 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

procedure Pressure Cis

PR : Pressure_Reading;

package Processes is :
PS : Pressure_Setting;

procedure Tenp_GC

procedure Pressure_GC begi n
end Processes; | oop
Read(PR) ;
with 10 use | O Pressure_Convert (PR, PS);
wi th Control Procedures; Wite(PS);
use Control _Procedures; Wite(PR);
end | oop;

package body Processes is
procedure Tenp Cis
TR : Tenp_Readi ng;
HS : Heater_Setting;
begi n
| oop
Read(TR); Tenp_Convert (TR, HS);
Wite(HS); Wite(TR);
end | oop;
end Tenp_C;

end Pressure_ C;
end Processes;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 57

Using O.S. Primitives 111

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

with OSI, Processes; use OSlI, Processes;
procedure Controller is
TC, PC : Thread I|ID;
begi n
TC := Create Thread(Tenp_C Access);
PC := Create Thread(Pressure C Access);
Start (TO) ;
Start (PC);
end Controller;

Better ..
’ For realistic OS,
more .
. solution becomes
reliable
: unreadable !
solution

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 58

Ada Tasking Approach

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

wth Data_Types; use Data_Types; task Pressure_Controller;
with 1G use IQ task body Pressure_Controller is
with Control Procedures; PR : Pressure_Readi ng;
use Control _Procedures; PS : Pressure_Setting;
procedure Controller is begi n
task Tenp_Controll er; | oop
task body Tenp_Controller is Read(PR) ;
TR : Tenp_Readi ng; Pressure_Convert (PR, PS);
HS : Heater Setting; Wite(PS); Wite(PR);
begi n end | oop;
| oop end Pressure Controller;
Read(TR) ;
Tenmp_Convert (TR, HS); begi n
Wite(HS); Wite(TR); nul | ;
end | oop; end Controller;

end Tenp_Controll er;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 59

Advantages of Concurrent Approach

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Controller tasks execute concurrently and each
contains an indefinite loop within which the control
cycle 1s defined

® While one task is suspended waiting for a read the
other may be executing

® [f both tasks are suspended there 1s no busy loop
[

the inherent parallelism of the domain is represented
by concurrently executing tasks in the program

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 60

Disadvantages

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Both tasks send data to the screen, but the screen 1s a
resource that can only sensibly be accessed by one
process at a time

® A third entity 1s required. This has transposed the
problem from that of concurrent access to a non-
concurrent resource to one of resource control

® It is necessary for controller tasks to pass data to the
screen resource

® The screen must ensure mutual exclusion

® The whole approach requires a run-time support
system

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 18.sdd Foil 61

