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The 5 Minute Review Session

1) What is concurrency?
2) Why concurrency?
3) How can we do „multiple things at the same time“? 

(Or at least pretend to do so ...)
4) What is a cyclic executive? What are the advantages 

and disadvantages?
5) What are the aspects of a concurrent process model?
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Overview

1) Coordination = communication + synchronization
2) Semaphores
3) Conditional critical regions
4) Monitors

These lecture notes are based on slides kindly 
provided by Burns and Wellings
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Where are we?

1) Coordination = communication + synchronization
Mutual exclusion and condition synchronization
Busy waiting
Suspend and resume

2) Semaphores
3) Conditional critical regions
4) Monitors

These lecture notes are based on slides kindly 
provided by Burns and Wellings
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Synchronisation and Communication

Synchronisation:
Satisfies constraints on interleaving of actions of processes
E.g. action by process A occurs after action by process B

Communication:
Passing of information from one process to another
Usually based upon either shared variables or message 
passing

Concepts are linked:
Communication requires synchronisation
Synchronisation = contentless communication

Synchronization and communication are essential for 
correct behavior of a concurrent program
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Coordination

Coordination mechanisms in general:
Message Passing
Shared Memory
Semaphores (binary and counting)
Mutexes and Condition Variables
Readers/Writers Locks
Tasking and Rendezvous
Event Flags
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Shared Variable Communication

Examples:
Busy waiting
Semaphores
Monitors

Unrestricted use of shared variables is unreliable and 
unsafe due to multiple update problems 
Consider two processes updating a shared variable, 
X, with the assignment: X:= X+1 

Load the value of X into some register 
Increment the value in the register by 1 and
Store the value in the register back to X

As the three operations are not indivisible, two processes 
simultaneously updating the variable could follow an 
interleaving that would produce an incorrect result
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Mutual Exclusion

Critical section:
Sequence of statements that must appear to be executed 
indivisibly

Mutual exclusion:
The synchronisation required to protect a critical section 
(Dijkstra 1965)

Atomicity is assumed to be present at the memory 
level

If one process is executing X:= 5, simultaneously with another 
executing X:= 6, the result will be either 5 or 6 (not some 
other value)

If two processes are updating a structured object, this 
atomicity will only apply at the single word element level
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Condition Synchronisation

Condition synchronisation
Process wants to perform operation A
A is safe/sensible only if another process has taken some 
other action B

Example: bounded buffer
Producer processes must block if buffer full
Consumer processes must block if buffer empty 

head tail

Is mutual 
exclusion 
necessary?
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Busy Waiting

For synchronisation, processes may set and check 
shared variables that are acting as flags (spin-locks)
Works well for condition synchronisation
However:

No simple method for mutual exclusion
Queuing discipline (fairness) difficult to ensure
Correctness difficult to prove
Misuse of shared variables by rogue tasks may corrupt 
entire system
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Suspend and Resume

Busy wait algorithms are in general inefficient
Processes use processing cycles when they cannot perform 
useful work
On multiprocessor systems, they can give rise to excessive 
traffic on the memory bus or network

Alternative:
Remove a process from set of runnable processes if the 
condition for which it is waiting does not hold (process 
suspension)
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Process States

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Waiting Dependent
Termination

Waiting Child
Initialization

Suspended
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Java's suspend() and resume()

The problem: testing and suspension are not atomic
Race condition may occur

Java has therefore made these methods obsolete

boolean flag;
final boolean up = true;
final boolean down = false;

class FirstT extends Thread {
public void run() {

...
if (flag == down) {

suspend();
};
flag = down;
...

}
}

class SecondT extends Thread {
FirstT T1;

public SecondT(FstT T) {
super();
T1 = T;

}

public void run() {
...
flag = up;
T1.resume();
...
}

}
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Safe Suspension

Solutions to race condition problem use a two-stage 
suspend operation:

P1 announces intent to suspend
Until suspension of P1, resume operation will be deferred

Ada provides safe version as part of Real-Time Annex

with Ada.Synchronous_TaskControl;
use Ada.Synchronous_TaskControl;
...
Flag: Suspension_Object;
...
task body P1 is
begin

...
Suspend_Until_True(Flag);
...

end P1;

task body P2 is
begin

...
Set_True(Flag);
...

end P2;
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Where are we?

1) Coordination = communication + synchronization
2) Semaphores

Review of operation
Ada, POSIX, LegOS
Criticisms

3) Conditional critical regions
4) Monitors

These lecture notes are based on slides kindly 
provided by Burns and Wellings
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Semaphores

Operations on Semaphores
INIT(S, Value)

Initialize S to Value
WAIT(S), or P(S):

If S > 0:
Decrement S by 1

Otherwise:
Delay process until S > 0
Then decrement S by 1

SIGNAL(S), or V(S):
Increment S by 1
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Concurrency and Semaphores

All semaphore operations are atomic
Two processes executing P or V operations on the 
same semaphore:

Cannot interfere with each other
Cannot fail during semaphore operation
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process P1
(* waiting process *)
statement X
wait (consyn)
statement Y

end P1

process P2
(* signalling proc *)
statement A
signal (consyn)
statement B

end P2

var consyn : semaphore (* init 0 *)

In what order will the statements execute ?

Condition synchronisation 
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Mutual Exclusion

process P2
statement A
wait (mutex)

statement B1
statement B2

signal (mutex)
statement C

end P2

process P1
statement X
wait (mutex)

statement Y1
statement Y2

signal (mutex)
statement Z

end P1

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

In what order will the statements execute ?
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Bounded Buffer with Semaphores

Producer() {
while (1) {

item = produce();
wait(sem-free);
wait(sem-mutex);
buffer[in] = item;
in = (in + 1) % MAX;
signal(sem-mutex);
signal(sem-avail);

}
}

Consumer() {
while (1) {

wait(sem-avail);
wait(sem-mutex);
item = buffer[out];
out = (out + 1) % MAX;
signal(sem-mutex);
signal(sem-free);
consume(item);

}
}

sem_init(sem-free, MAX);
sem_init(sem-avail, 0);
sem_init(sem-mutex, 1);
in = out = 0;
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Deadlock

Two processes are deadlocked if each is holding a 
resource while waiting for a resource held by the 
other

task B;
task body B is
begin
...
Wait(Y);
Wait(X);
...
end B;

task A;
task body A is
begin
...
Wait(X);
Wait(Y);
...
end A;

type Sem is ...;
X : Sem := 1;
Y : Sem := 1;
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Livelock

Two processes are livelocked if each is executing but 
neither is able to make progress

type Flag is (Up, Down);
Flag1 : Flag := Up;

task B;
task body B is
begin

...
while Flag1 = Up loop

null;
end loop;
...

end A;

task A;
task body A is
begin

...
while Flag1 = Up loop

null;
end loop;
...

end A;
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Binary and quantity semaphores

A general semaphore is a non-negative integer
Its value can rise to any supported positive number

A binary semaphore only takes the value 0 and 1
The signalling of a semaphore which has the value 1 has 
no effect - the semaphore retains the value 1

A general semaphore can be implemented by two 
binary semaphores and an integer (  Homework)
With a quantity semaphore the amount to be 
decremented by WAIT (and incremented by 
SIGNAL) is given as a parameter; e.g. WAIT (S, i) 
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package Semaphore_Package is
type Semaphore(Initial : Natural) is limited private;
procedure Wait (S : Semaphore);
procedure signal (S : Semaphore);

private
type Semaphore ...

end Semaphore_Package;

Example semaphore programs in Ada

Recall: the essence of abstract data types is that they 
can be used without knowledge of their 
implementation

Ada does not directly support semaphores
But can construct wait and signal procedures from Ada 
synchronisation primitives
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The Bounded Buffer in Ada

package Buffer is
procedure Append (I : Integer);
procedure Take (I : out Integer);

end Buffer;

package body Buffer is
Size : constant Natural := 32;
type Buffer_Range is mod Size;
Buf : array (Buffer_Range) of Integer;
Top, Base : Buffer_Range := 0;

Mutex : Semaphore(1);
Item_Available : Semaphore(0);
Space_Available : Semaphore(Size);

procedure Append (I : Integer) is separate;
procedure Take (I : out Integer) is separate;

end Buffer;
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procedure Append(I : Integer) is
begin

Wait(Space_Available);
Wait(Mutex);

Buf(Top) := I;
Top := Top+1

Signal(Mutex);
Signal(Item_Available);

end Append;
procedure Take(I : out Integer) is
begin

Wait(Item_Available);
Wait(Mutex);

I := BUF(base);
Base := Base+1;

Signal(Mutex);
Signal(Space_Available);

end Take;

The Bounded Buffer in Ada cont.
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Semaphores in C/POSIX

Few modern programming languages support 
semaphores directly – but many OSs do
POSIX provides counting semaphores for 
communication between processes or threads

#include <time.h> typedef ... sem_t;

int sem_init(sem_t *sem, int pshared, unsigned int value)
int sem_destroy(sem_t *sem);

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_timedwait(sem_t *sem, const struct timespec *abstime);

int sem_post(sem_t *sem);
int sem_getvalue(sem_t *sem, int *value);

pshared is 1 iff the semaphore can be used between processes; 
otherwise, can only be used between threads of the same process
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legOS Counting Semaphores

// The pshared argument is there only for
// backwards-compatibility and can be ignored
int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_post(sem_t *sem);

Are analogous to POSIX counting semaphores:
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Criticisms of semaphores

Semaphores are an elegant low-level synchronisation 
primitive (and historically important)
However, their use is error-prone

If a semaphore is omitted or misplaced, the entire 
program may collapse
Mutual exclusion may not be assured and deadlock may 
appear just when the software is dealing with a rare but 
critical event 

A more structured synchronisation primitive is 
required for the RT domain
No high-level concurrent programming language 
relies entirely on semaphores



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_19.sdd Foil 30

Where are we?

1) Coordination = communication + synchronization
2) Semaphores
3) Conditional critical regions
4) Monitors

These lecture notes are based on slides kindly 
provided by Burns and Wellings
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Conditional Critical Regions (CCR)

Critical region:
A section of code that is guaranteed to be executed in 
mutual exclusion

Shared variables are grouped together into named 
regions and are tagged as being resources 
Processes are prohibited from entering a region in 
which another process is already active 
Condition synchronisation is provided by guards

When a process wishes to enter a critical region it 
evaluates the guard (under mutual exclusion)
if the guard evaluates true it may enter
if it is false the process is delayed

As with semaphores, no guarenteed access order
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The Bounded Buffer I

program buffer_eg;
type buffer_t is record

slots : array(1..N) of character;
size : integer range 0..N;
head, tail : integer range 1..N;

end record;

buffer : buffer_t;
resource buf : buffer;

process producer is separate;
process consumer is separate;

end.
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The Bounded Buffer II

process producer;
loop

region buf when buffer.size < N do
-- place char in buffer etc

end region
end loop;

end producer

process consumer;
loop

region buf when buffer.size > 0 do
-- take char from buffer etc

end region
end loop;

end consumer
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A Problem

A version of CCRs has been implemented in Edison
One problem with CCRs:

Processes must re-evaluate their guards every time a CCR 
naming that resource is left
A suspended process must become executable again in 
order to test the guard

If guard is still false, process must return to the 
suspended state

Edison is a language intended for embedded applications, 
implemented on multiprocessor systems

Each processor only executes a single process so it may 
continually evaluate its guards if necessary



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_19.sdd Foil 35

Where are we?

1) Coordination = communication + synchronization
2) Semaphores
3) Conditional critical regions
4) Monitors

Condition variables (WAIT + SIGNAL)
POSIX mutexes and condition variables
Nested monitor calls

These lecture notes are based on slides kindly 
provided by Burns and Wellings
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Monitors

Another problem with CCRs:
Can be dispersed throughout the program

Monitors provide encapsulation, and efficient 
condition synchronisation
The critical regions are written as procedures and are 
encapsulated together into a single module:

All variables that must be accessed under mutual 
exclusion are hidden
All procedure calls into the module are guaranteed to be 
mutually exclusive
Only the operations are visible outside the monitor

Monitors have been implemented in Modula-1 and 
Concurrent Pascal 



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_19.sdd Foil 37

The Bounded Buffer I

monitor buffer;
export append, take;
var (*declare necessary vars*)

procedure append (I : integer);
...

end;

procedure take (var I : integer);
...

end;
begin

(* initialisation *)
end; How do we get condition 

synchronisation?
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Condition Variables

Different semantics exist
In Hoare’s monitors:

A condition variable is acted upon by two semaphore-like 
operators WAIT and SIGNAL 

When a process issues a WAIT:
Process is blocked (suspended) and placed on a queue 
associated with the condition variable
Note: a wait on a condition variable always blocks unlike 
a wait on a semaphore

A blocked process releases its hold on the monitor
Allows another process to enter 

A SIGNAL releases one blocked process
If no process is blocked then the signal has no effect

 Note that a signal on a semaphore always has an effect on the 
semaphore

 The semantics of wait and signal is more aking to suspend and 
resume
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The Bounded Buffer II
monitor buffer;

export append, take;

var BUF : array[ . . . ] of integer;
top, base : 0..size-1; NumberInBuffer : integer;

spaceavailable, itemavailable : condition;

procedure append (I : integer);
begin

if NumberInBuffer = size then
wait(spaceavailable);

end if;
BUF[top] := I;
NumberInBuffer := NumberInBuffer+1;
top := (top+1) mod size;
signal(itemavailable)

end append;
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procedure take (var I : integer);
begin

if NumberInBuffer = 0 then
wait(itemavailable);

end if;
I := BUF[base];
base := (base+1) mod size;
NumberInBuffer := NumberInBuffer-1;
signal(spaceavailable);

end take;

begin (* initialisation *)
NumberInBuffer := 0;
top := 0; base := 0

end;

The Bounded Buffer III

A process appending 
an item will, however, 
signal this suspended 
process when an item 
does become available.

If a process calls 
take when there is 
nothing in the buffer 
then it will become 
suspended on 
itemavailable.
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The Semantics of SIGNAL

How to assure mutual exclusion between the 
signalling process and the process that is restarted?
Different options: 

1) A signal is allowed only as the last action of a process 
before it leaves the monitor

2) A signal operation has the side-effect of executing a 
return statement, i.e. the process is forced to leave

3) A signal operation which unblocks another process has 
the effect of blocking itself; this process will only execute 
again when the monitor is free (Hoare 1974)

4) A signal operation which unblocks a process does not 
block the caller. The unblocked process must gain access 
to the monitor again
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P1 P2 P3

produce

leave

signal NotEmpty

produce

produce

consume

time

wait NotFull

signal NotFull

leave

leave

SIGNAL – Example
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POSIX Mutexes and Condition Variables

POSIX Mutexes and Condition Variables:
Equivalent to monitor for communication and 
synchronisation between threads
Provide functionality of monitor, with procedural 
interface

Require same address space
Not applicable across process boundaries

Are a more structured alternative to semaphores
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POSIX Mutexes and Condition Variables

Mutexes and condition variables have associated 
attribute objects
Example attributes: 

set the semantics for a thread trying to lock a mutex that it 
already has locked
allow sharing of mutexes and condition variables 
between processes
set/get priority ceiling
set/get the clock used for timeouts

typedef ... pthread_mutex_t;
typedef ... pthread_mutexattr_t;
typedef ... pthread_cond_t;
typedef ... pthread_condattr_t;

Here we will use default attributes only
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int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

/* initialises a mutex with certain attributes */

int pthread_mutex_destroy(pthread_mutex_t *mutex);
/* destroys a mutex */
/* undefined behaviour if the mutex is locked */

int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr);

/* Initialises a condition variable */
/* with certain attributes */

int pthread_cond_destroy(pthread_cond_t *cond);
/* Destroys a condition variable */
/* undefined, if threads are */
/* waiting on the cond. variable */

POSIX Interface I
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int pthread_mutex_lock(pthread_mutex_t *mutex);
/* lock the mutex; if locked already suspend calling thread */
/* the owner of the mutex is the thread which locked it */

int pthread_mutex_trylock(pthread_mutex_t *mutex);
/* as lock but gives an error if mutex is already locked */

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
const struct timespec *abstime);

/* as lock but gives an error if mutex cannot be obtained */
/* by the timeout */

int pthread_mutex_unlock(pthread_mutex_t *mutex);
/* unlocks the mutex if called by the owning thread */
/* undefined behaviour if calling thread is not the owner */
/* undefined behaviour if the mutex is not locked } */
/* when successful, a blocked thread is released */

POSIX Interface II



 R. v. Hanxleden SS 2002 – Real-Time Systems Programming  –  Lecture_19.sdd Foil 47

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

/* called by thread which owns a locked mutex */
/* undefined behaviour if the mutex is not locked */
/* atomically blocks the caller on the cond variable and */
/* releases the lock on mutex */
/* a successful return indicates the mutex has been locked */

int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t *mutex, const struct timespec *abstime);

/* the same as pthread_cond_wait, except that a error is */
/* returned if the timeout expires */

POSIX Interface III
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int pthread_cond_signal(pthread_cond_t *cond);
/* unblocks at least one blocked thread */
/* no effect if no threads are blocked */

int pthread_cond_broadcast(pthread_cond_t *cond);
/* unblocks all blocked threads */
/* no effect if no threads are blocked */

/* all unblocked threads automatically contend for */
/* the associated mutex */

All functions return 0 if successful

POSIX Interface IV
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POSIX Bounded Buffer I
#define BUFF_SIZE 10

typedef struct {
pthread_mutex_t mutex;
pthread_cond_t buffer_not_full;
pthread_cond_t buffer_not_empty;
int count, first, last;
int buf[BUFF_SIZE];

} buffer;

int append(int item, buffer *B ) {
PTHREAD_MUTEX_LOCK(&B->mutex);

while(B->count == BUFF_SIZE) {
PTHREAD_COND_WAIT(&B->buffer_not_full, &B->mutex);

}

/* put data in the buffer and update count and last */
PTHREAD_MUTEX_UNLOCK(&B->mutex);
PTHREAD_COND_SIGNAL(&B->buffer_not_empty);
return 0;

}
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int take(int *item, buffer *B ) {
PTHREAD_MUTEX_LOCK(&B->mutex);

while(B->count == 0) {
PTHREAD_COND_WAIT(&B->buffer_not_empty, &B->mutex);

}

/* get data from the buffer and update count and first */
PTHREAD_MUTEX_UNLOCK(&B->mutex);
PTHREAD_COND_SIGNAL(&B->buffer_not_full);
return 0;

}

int initialize(buffer *B) {
/* set the attribute objects and initialize the */
/* mutexes and condition variable */

}

POSIX Bounded Buffer II
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Nested Monitor Calls

What to do if a process having made a nested 
monitor call is suspended in another monitor? 

The mutual exclusion in the last monitor call will be 
relinquished by the process (semantics of wait)
However, mutual exclusion will not be relinquished by 
processes in monitors from which the nested calls have 
been made; processes that attempt to invoke procedures in 
these monitors will become blocked

Approaches:
Maintain the lock: e.g. POSIX, Java 
Prohibit nested procedure calls altogether: e.g. Modula-1
Provide constructs to let a monitor procedure release its 
mutual exclusion lock during remote calls
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Criticisms of Monitors

The monitor gives a structured and elegant solution 
to mutual exclusion problems such as the bounded 
buffer
It does not, however, deal well with condition 
synchronization — requiring low-level condition 
variables
All the criticisms surrounding the use of semaphores 
apply equally to condition variables
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Summary I

Critical section — code that must be executed under 
mutual exclusion
Producer-consumer system — two or more 
processes exchanging data via a finite buffer
Busy waiting — a process continually checking a 
condition to see if it is now able to proceed
Livelock — an error condition in which one or more 
processes are prohibited from progressing whilst 
using up processing cycles
Deadlock — a collection of suspended processes that 
cannot proceed
Indefinite postponement — a process being unable 
to proceed as resources are not made available 
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Summary II

Semaphore — a non-negative integer that can only 
be acted upon by WAIT and SIGNAL atomic 
procedures 
Two more structured primitives are:

Conditional critical regions
Monitors

Suspension in a monitor is achieved using condition 
variable
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To Go Further

[Burns and Wellings 2001] – Chapter 8
[Gallmeister 1995] - Chapter 4


