Real-Time Systems Programming

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Summer-Semester 2002
Lecture 19
20 June 2002

57/15/%&/11’2411’0/1 ano
Communication

Parté 5

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 1

The 5 Minute Review Session

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

1) What is concurrency?
2) Why concurrency?

3) How can we do ,,multiple things at the same time*?
(Or at least pretend to do so ...)

4) What is a cyclic executive? What are the advantages
and disadvantages?

5) What are the aspects of a concurrent process model?

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 2

Overview

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

1) Coordination = communication + synchronization

2) Semaphores
3) Conditional critical regions

4) Monitors

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 3

These lecture notes are based on slides kindly
provided by Burns and Wellings

Where are we?

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

1) Coordination = communication + synchronization
» Mutual exclusion and condition synchronization
> Busy waiting
> Suspend and resume

2) Semaphores

3) Conditional critical regions

4) Monitors

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 4

These lecture notes are based on slides kindly
provided by Burns and Wellings

Synchronisation and Communication

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Synchronisation:
> Satisfies constraints on interleaving of actions of processes
> E.g. action by process A occurs after action by process B
® Communication:
> Passing of information from one process to another
> Usually based upon either shared variables or message
passing
® Concepts are linked.
> Communication requires synchronisation
> Synchronisation = contentless communication
® Synchronization and communication are essential for
correct behavior of a concurrent program

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 5

Coordination

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Coordination mechanisms in general:

> Message Passing

> Shared Memory

> Semaphores (binary and counting)
> Mutexes and Condition Variables
> Readers/Writers Locks

> Tasking and Rendezvous

> Event Flags

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 6

Shared Variable Communication

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® FExamples:
> Busy waiting

> Semaphores
> Monitors
® Unrestricted use of shared variables 1s unreliable and
unsafe due to multiple update problems

® Consider two processes updating a shared variable,
X, with the assignment: X:= X+1
> Load the value of X into some register
> Increment the value in the register by 1 and
> Store the value in the register back to X

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 7

® As the three operations are not indivisible, two processes
simultaneously updating the variable could follow an
interleaving that would produce an incorrect result

Mutual Exclusion

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® (Critical section:
> Sequence of statements that must appear to be executed
indivisibly
® Mutual exclusion:

> The synchronisation required to protect a critical section
(Dijkstra 1965)

® Atomicity 1s assumed to be present at the memory
level

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 8

® [f one process is executing X:= 5, simultaneously with another
executing X:= 6, the result will be either 5 or 6 (not some
other value)

® [f two processes are updating a structured object, this
atomicity will only apply at the single word element level

Condition Synchronisation

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Condition synchronisation
> Process wants to perform operation A4

> A 1s safe/sensible only if another process has taken some
other action B

® Example: bounded buffer

> Producer processes must block if buffer full
> Consumer processes must block if buffer empty

Is mutual

T T exclusion

necessary?

head tail

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 9

Busy Waiting

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® For synchronisation, processes may set and check
shared variables that are acting as flags (spin-locks)

® Works well for condition synchronisation

® However:
> No simple method for mutual exclusion
> Queuing discipline (fairness) difficult to ensure
> Correctness difficult to prove

> Misuse of shared variables by rogue tasks may corrupt
entire system

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 10

Suspend and Resume

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Busy wait algorithms are in general inefficient

> Processes use processing cycles when they cannot perform
useful work

> On multiprocessor systems, they can give rise to excessive
traffic on the memory bus or network

® Alternative:

> Remove a process from set of runnable processes if the
condition for which it is waiting does not hold (process
suspension)

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 11

R. v. Hanxleden

Waiting Child
Initialization

Process States

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Non-existing

Executable

Suspended

Non-existing

A

Terminated

Waiting Dependent
Termination

SS 2002 — Real-Time Systems Programming — Lecture 19.sdd

Foil 12

Java's suspend() andresune()

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

bool ean fl ag; cl ass SecondT extends Thread {

final bool ean up = true; FirstT T1;

final bool ean down = fal se;
public SecondT(FstT T) {

class FirstT extends Thread { super () ;
public void run() { T =T
}
if (flag == down) { _ _
suspend(); public void run() {
};
flag = down; flag = up;
. T1. resune();
}
} }

}

® The problem: testing and suspension are not atomic
> Race condition may occur
® Java has therefore made these methods obsolete

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 13

Safe Suspension

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Solutions to race condition problem use a two-stage
suspend operation:

> P1 announces intent to suspend
> Until suspension of P1, resume operation will be deferred

® Ada provides safe version as part of Real-Time Annex

wi t h Ada. Synchronous_TaskControl ;
use Ada. Synchronous_TaskControl ;

ﬁiég: Suspensi on_(hj ect ; task body P2 is

. begi n

task body P1 is -

begi n Set True(Fl ag);
Suspend_Unti| _True(Fl ag): end P2;

end.bl;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 14

Where are we?

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

1) Coordination = communication + synchronization

2) Semaphores

> Review of operation

> Ada, POSIX, LegOS

> Criticisms
3) Conditional critical regions
4) Monitors

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 15

These lecture notes are based on slides kindly
provided by Burns and Wellings

Semaphores
CGLUULLULLULLULUULUULUULUUULULLLLLLLGLG L
® Operations on Semaphores

> INIT(S, Value)
+Initialize S to Value

> WAIT(S), or P(S):

+If § > 0:
® Decrement S by 1

+Otherwise:
® Delay process until §> 0

® Then decrement S by 1

> SIGNAL(S), or V(S):
+Increment S by 1

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 16

Concurrency and Semaphores

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® All semaphore operations are atomic

® Two processes executing P or V operations on the
same semaphore:

> Cannot interfere with each other

» Cannot fail during semaphore operation

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 17

Condition synchronisation

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

var consyn : semaphore (* init 0 *)

process P1 process P2
(* waiting process *) (* signalling proc *)
statenment X statenent A
wai t (consyn) signal (consyn)
statenment Y statenment B

end Pl end P2

In what order will the statements execute ?

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 18

Mutual Exclusion

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

process P1
statenent X
wai t (nutex)
statenent Y1l
statenent Y2
si gnal (nutex)
statenent Z
end P1

R. v. Hanxleden

process P2
statenent A
wai t (nut ex)
st atenment Bl
statenent B2
si gnal (nut ex)
statement C
end P2

In what order will the statements execute ?

SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 19

Bounded Buffer with Semaphores

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

in = out

seminit(semfree, MAX);
seminit(semavail, 0);
seminit(semnutex, 1);

:O’

Producer () {
while (1) {

I tem = produce();
wait (semfree);

wai t (sem nut ex) ;
buffer[in] = item
in =(in + 1) % MAX;
si gnal (sem nmut ex) ;
signal (sem avail);

Consuner () {
while (1) {

wai t (sem avail) ;
wai t (sem nmut ex) ;
item = buffer[out];
out = (out + 1) % MAX;
si gnal (sem nut ex) ;
signal (semfree);
consune(iten;

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 20

Deadlock

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Two processes are deadlocked 1f each 1s holding a
resource while waiting for a resource held by the
other

type Semis ...;

X : Sem:= 1;

Y : Sem:= 1;
task A t ask B;
task body Ais task body B is
begi n begi n
Vi t (X) ; i/\éit(Y);
Vait(Y); Vi t (X);
end A end B;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 21

Livelock

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Two processes are livelocked if each is executing but
neither 1s able to make progress

type Flag is (Up, Down);
Flagl : Flag := Up;

task A; t ask B;
task body A is task body B is
begi n begi n
ﬁhile Flagl = Up | oop ﬁhile Flagl = Up | oop
nul | ; nul | ;
end | oop; end | oop;
ena.A; end.A;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 22

Binary and quantity semaphores

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® A general semaphore 1s a non-negative integer
> Its value can rise to any supported positive number

® A binary semaphore only takes the value 0 and 1
> The signalling of a semaphore which has the value 1 has
no effect - the semaphore retains the value 1

® A general semaphore can be implemented by two
binary semaphores and an integer (= Homework)

® With a quantity semaphore the amount to be
decremented by WAIT (and incremented by
SIGNAL) is given as a parameter; e.g. WAIT (S, 1)

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 23

Example semaphore programs in Ada
® Recall: the essence of abstract data types is that they
can be used without knowledge of their
implementation

package Semaphore_Package is
type Semaphore(lnitial : Natural) is |imted private;
procedure VWit (S : Semaphore);
procedure signal (S : Semaphore);
private
type Semaphore ...
end Semaphore_ Package;

® Ada does not directly support semaphores
> But can construct wait and signal procedures from Ada
synchronisation primitives

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 24

The Bounded Buffer in Ada

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

package Buffer is
procedure Append (I : Integer);
procedure Take (I : out Integer);
end Buffer;

package body Buffer is
Size : constant Natural := 32;
type Buffer Range is nod Size;
Buf : array (Buffer_Range) of Integer;
Top, Base : Buffer Range := O;

Mut ex : Semaphore(l);
| tem Avai l abl e : Semaphore(0);
Space_ Avail abl e : Semaphore(Si ze);

procedure Append (I : Integer) is separate,;
procedure Take (I : out Integer) is separate;
end Buffer;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 25

The Bounded Buffer in Ada cont.

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

procedure Append(l : Integer) is
begi n
Wai t (Space_Avai | abl e) ;
Wai t (Mut ex) ;
Buf (Top) :=1I;

Top : = Top+1l
Si gnal (Mut ex) ;
Signal (1 tem Avai |l abl e);

end Append;
procedure Take(l : out Integer) is
begi n
Wait (Item Avail abl e) ;
Wai t (Mut ex) ;
| := BUF(base);
Base : = Base+1;

Si gnal (Mut ex) ;
Si gnal (Space_Avai | abl e) ;
end Take;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 26

Semaphores in C/POSIX

GLUULLULLLLULLLUULLULLUULULLLLLLLLLG G
® Few modern programming languages support
semaphores directly — but many OSs do

® POSIX provides counting semaphores for
communication between processes or threads

#include <tine.h> typedef ... semt;

int seminit(semt *sem int pshared, unsigned int val ue)
i nt sem destroy(semt *sem;

Int semwait(semt *sen);
Int semtrywait(semt *sem;
int semtinedwait(semt *sem const struct tinespec *abstine);

I nt sem post(semt *sen);
I nt sem getval ue(semt *sem int *val ue);

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 27

pshar ed is 1 iff the semaphore can be used between processes;
otherwise, can only be used between threads of the same process

legOS Counting Semaphores

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Are analogous to POSIX counting semaphores:

/1 The pshared argunent is there only for
/| backwards-conpatibility and can be ignored
int seminit(semt *sem int pshared, unsigned int val ue);

Int semwait(semt *sen);
int semtrywait(semt *sem;

I nt sem post(semt *sem;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 28

Criticisms of semaphores
® Semaphores are an elegant low-level synchronisation
primitive (and historically important)
® However, their use 1s error-prone

> If a semaphore is omitted or misplaced, the entire
program may collapse

> Mutual exclusion may not be assured and deadlock may
appear just when the software is dealing with a rare but
critical event

® A more structured synchronisation primitive 1s
required for the RT domain

® No high-level concurrent programming language
relies entirely on semaphores

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 29

Where are we?

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

1) Coordination = communication + synchronization

2) Semaphores
3) Conditional critical regions

4) Monitors

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 30

These lecture notes are based on slides kindly
provided by Burns and Wellings

Conditional Critical Regions (CCR)

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Critical region:
> A section of code that 1s guaranteed to be executed in
mutual exclusion

® Shared variables are grouped together into named
regions and are tagged as being resources

® Processes are prohibited from entering a region in
which another process is already active

® Condition synchronisation is provided by guards

> When a process wishes to enter a critical region it
evaluates the guard (under mutual exclusion)

> 1f the guard evaluates true it may enter
> 1f 1t 1s false the process is delayed

® As with semaphores, no guarenteed access order

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 31

The Bounded Buffer I

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

type buffer t
slots
Si ze
head, tai
end record;

buf f er
resour ce buf

program buf fer_eg;

buffer t;

is record

array(l.. N of character;
| nt eger range O..N;

| nteger range 1..N;

buf f er;

process producer
process consuner
end.

I S separ at e;
I S separ at e;

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 19.sdd

Foil 32

The Bounded Buffer 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

process producer;
| oop
regi on buf when buffer.size < N do
-- place char in buffer etc
end region
end | oop;
end producer

process consuner;
| oop
regi on buf when buffer.size > 0 do
-- take char frombuffer etc
end region
end | oop;
end consumer

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 33

A Problem

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® A version of CCRs has been implemented in Edison
® One problem with CCRs:

> Processes must re-evaluate their guards every time a CCR
naming that resource is left

> A suspended process must become executable again in
order to test the guard

+If guard is still false, process must return to the
suspended state

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 34

® FEdison is a language intended for embedded applications,
implemented on multiprocessor systems
» Each processor only executes a single process so it may
continually evaluate its guards if necessary

Where are we?

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

1) Coordination = communication + synchronization

2) Semaphores
3) Conditional critical regions

4) Monitors
> Condition variables (WAIT + SIGNAL)
» POSIX mutexes and condition variables

> Nested monitor calls

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 35

These lecture notes are based on slides kindly
provided by Burns and Wellings

Monitors

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Another problem with CCRs:
» Can be dispersed throughout the program

® Monitors provide encapsulation, and efficient
condition synchronisation

® The critical regions are written as procedures and are
encapsulated together into a single module:

> All variables that must be accessed under mutual
exclusion are hidden

> All procedure calls into the module are guaranteed to be
mutually exclusive
> Only the operations are visible outside the monitor
® Monitors have been implemented in Modula-1 and
Concurrent Pascal

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 36

The Bounded Buffer I

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

noni t or buffer;
export append, take;
var (*decl are necessary vars?*)
procedure append (I : integer);
end;
procedure take (var | : integer);
end;
begi n
(* initialisation *)
end; How do we get|condition
synchronisation?

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 37

Condition Variables
® Different semantics exist

® [n Hoare’s monitors:
> A condition variable is acted upon by two semaphore-like
operators WAIT and SIGNAL
® When a process issues a WAIT:

> Process 1s blocked (suspended) and placed on a queue
associated with the condition variable

> Note: a wait on a condition variable always blocks unlike
a wait on a semaphore

® A blocked process releases its hold on the monitor
> Allows another process to enter

® A SIGNAL releases one blocked process

> If no process 1s blocked then the signal has no effect

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 38

* Note that a signal on a semaphore always has an effect on the
semaphore

e The semantics of wait and signal 1s more aking to suspend and
resume

The Bounded Buffer 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

noni t or buffer;
export append, take;
var BUF : array]] of integer;
top, base : 0..size-1; NunberlnBuffer I nt eger;
spaceavail abl e, itemavail able : condition;
procedure append (| | nt eger) ;
begi n
i f Nunber|InBuffer = size then

wai t (spaceavai |l abl e) ;

end if;

BUF[top] :=1;

Nunber | nBuf f er : = Nunber | nBuff er +1;
top := (top+l) nod size;

signal (i temavai |l abl e)
end append;

R. v. Hanxleden

SS 2002 — Real-Time Systems Programming — Lecture 19.sdd

Foil 39

The Bounded Buffer 111

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

If a process calls
procedure take (var | : integer); t ake when there is
begi n ..

igf Nunmber | nBuffer = 0 then ”O”’”T’g z.n b e
wai t (it enmavail abl e) then it will become

end if: suspended on

| := BUF[base]; | t emavai | abl e.

base : = (base+l) nod size;

Nunber | nBuf fer : = Nunber| nBuffer-1;
si gnal (spaceavai |l abl e) ;

end t ake; :
A process appending
begin (* initialisation *) an item will, however,
Nunmber I nBuf fer := O; signal this suspended

top := 0; base := 0

process when an item
end;

does become available.

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 40

The Semantics of SIGNAL

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® How to assure mutual exclusion between the
signalling process and the process that is restarted?

® Different options:

1) A signal is allowed only as the last action of a process
before it leaves the monitor

2) A signal operation has the side-effect of executing a
return statement, 1.e. the process is forced to leave

3) A signal operation which unblocks another process has
the effect of blocking itself; this process will only execute
again when the monitor 1s free (Hoare 1974)

4) A signal operation which unblocks a process does not
block the caller. The unblocked process must gain access
to the monitor again

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 41

SIGNAL — Example

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

Pl P2 P3

produce
: produce
signal NotEmpty |
| cons1|1me
|
. |
leave ,
i |
wait INotFull I
' 3
|
1 signal INotFull
1
produce leave s
v !

time g % leave

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 42

POSIX Mutexes and Condition Variables

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® POSIX Mutexes and Condition Variables:

> Equivalent to monitor for communication and
synchronisation between threads

> Provide functionality of monitor, with procedural
interface

® Require same address space
> Not applicable across process boundaries

® Are a more structured alternative to semaphores

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 43

POSIX Mutexes and Condition Variables

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Mutexes and condition variables have associated
attribute objects

® Example attributes:

> set the semantics for a thread trying to lock a mutex that it
already has locked

> allow sharing of mutexes and condition variables
between processes

> set/get priority ceiling
> set/get the clock used for timeouts

typedef ... pthread_nutex_t;
typedef ... pthread nutexattr t;
typedef ... pthread cond t;
typedef ... pthread condattr t;

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 44

Here we will use default attributes only

POSIX Interface 1

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

int pthread nutex _init(pthread nutex_ t *nutex,
const pthread_nutexattr_t *attr);
/[* initialises a nutex with certain attributes */

int pthread nutex _destroy(pthread nmutex t *nutex);
/* destroys a nutex */
/* undefined behaviour if the nutex is |ocked */

I nt pthread cond init(pthread_cond_t *cond,
const pthread _condattr_t *attr);
/* Initialises a condition variable */
/* with certain attributes */

i nt pthread_cond_destroy(pthread_cond_t *cond);
/* Destroys a condition variable */
/* undefined, if threads are */
/* waiting on the cond. variable */

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 45

POSIX Interface 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

int pthread mutex | ock(pthread_nmutex_t *nutex);
/* lock the mutex; if | ocked already suspend calling thread */
/* the owner of the mutex is the thread which |ocked it */

int pthread nutex_ trylock(pthread mutex t *nutex);
/* as lock but gives an error if mutex is already | ocked */

int pthread nutex tinedl ock(pthread nmutex_ t *mutex,
const struct tinespec *abstine);
/* as lock but gives an error if mutex cannot be obtained */
/* by the tinmeout */

i nt pthread nmutex _unl ock(pthread nmutex t *mutex);
/* unl ocks the nmutex if called by the owing thread */
/* undefined behaviour if calling thread is not the owner */
/* undefined behaviour if the nmutex is not |ocked } */
/* when successful, a blocked thread is rel eased */

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 46

POSIX Interface Il

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

int pthread cond wait(pthread cond t *cond,
pt hread nmutex t *nutex);
/* called by thread which owns a | ocked nutex */
/* undefined behaviour if the nmutex is not |ocked */
/* atom cally blocks the caller on the cond variable and */
/* releases the I ock on nmutex */
/* a successful return indicates the nmutex has been | ocked */

int pthread cond tinedwait(pthread _cond t *cond,
pthread nmutex t *mutex, const struct timespec *abstine);
/* the sanme as pthread cond wait, except that a error is */
/* returned if the timeout expires */

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 47

POSIX Interface IV

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

int pthread cond signal (pthread cond t *cond);
/[* unbl ocks at | east one bl ocked thread */
/* no effect if no threads are bl ocked */

i nt pthread _cond _broadcast (pthread_cond_t *cond);
/* unbl ocks all bl ocked threads */
[* no effect if no threads are bl ocked */

/* all unbl ocked threads automatically contend for */
/* the associ ated nutex */

All functions return 0 if successful

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 48

POSIX Bounded Buffer 1

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

#defi ne BUFF_SI ZE 10

t ypedef struct {

int count, first,
i nt buf[BUFF_SI ZE]
} buffer;

int append(int item

whi | e(B- >count ==

}

/* put data in the

return O;

}

pt hread nmutex t nutex;
pt hread _cond_t buffer not full;
pt hread cond_t buffer not enpty;

PTHREAD MUTEX_LOCK(&B- >mut ex) :

PTHREAD COND WAI T(&B- >buf fer _not full, &B->mutex);

PTHREAD MUTEX_UNLOCK(&B- >nut ex) ;
PTHREAD COND_SI GNAL(&B- >buf f er _not _enpty);

| ast ;

buffer *B) {

BUFF_SI ZE) {

buf fer and update count and | ast */

R. v. Hanxleden 5SS 2002 — Keal- l1me Systems Programming — Lecture_19.sdd Foil 49

POSIX Bounded Buffer 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

int take(int *item buffer *B) {
PTHREAD_ MUTEX_LOCK(&B- >mut ex) ;

whi | e(B->count == 0) {
PTHREAD COND WAI T(&B- >buf fer _not _enpty, &B->nutex);
}

/* get data fromthe buffer and update count and first */
PTHREAD MUTEX_ UNLQOCK(&B- >mut ex) ;

PTHREAD COND_SI GNAL(&B->buffer_not _full);

return O;

}

int initialize(buffer *B) {
/* set the attribute objects and initialize the */
/* mutexes and condition variable */

}

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 50

Nested Monitor Calls

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® What to do if a process having made a nested
monitor call 1s suspended in another monitor?

» The mutual exclusion in the last monitor call will be
relinquished by the process (semantics of wait)

> However, mutual exclusion will not be relinquished by
processes in monitors from which the nested calls have
been made; processes that attempt to invoke procedures in
these monitors will become blocked

® Approaches:
> Maintain the lock: e.g. POSIX, Java
> Prohibit nested procedure calls altogether: e.g. Modula-1

> Provide constructs to let a monitor procedure release its
mutual exclusion lock during remote calls

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 51

Criticisms of Monitors
® The monitor gives a structured and elegant solution
to mutual exclusion problems such as the bounded

buffer

® |t does not, however, deal well with condition
synchronization — requiring low-level condition
variables

® All the criticisms surrounding the use of semaphores
apply equally to condition variables

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 52

Summary 1

® Critical section — code that must be executed under
mutual exclusion

® Producer-consumer system — two or more
processes exchanging data via a finite buffer

® Busy waiting — a process continually checking a
condition to see if it 1s now able to proceed

® [ivelock — an error condition in which one or more
processes are prohibited from progressing whilst
using up processing cycles

® Deadlock — a collection of suspended processes that
cannot proceed

® [ndefinite postponement — a process being unable
to proceed as resources are not made available

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 53

Summary 11

LU LLLULLULLUUULULULLUOUULLULLLLLLLL

® Semaphore — a non-negative integer that can only
be acted upon by WAIT and SIGNAL atomic
procedures

® Two more structured primitives are:
» Conditional critical regions

> Monitors

® Suspension in a monitor 1s achieved using condition
variable

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 54

To Go Further

LU LLLULLLLUUULULULLUUUULLULLLLLLLL

[Burns and Wellings 2001] — Chapter 8
& [Gallmeister 1995] - Chapter 4

R. v. Hanxleden SS 2002 — Real-Time Systems Programming — Lecture 19.sdd Foil 55

