
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 1

Real-Time Systems Programming

Synchronization and
Communication

Part I

Summer-Semester 2002
Lecture 19

20 June 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 2

The 5 Minute Review Session

1) What is concurrency?
2) Why concurrency?
3) How can we do „multiple things at the same time“?

(Or at least pretend to do so ...)
4) What is a cyclic executive? What are the advantages

and disadvantages?
5) What are the aspects of a concurrent process model?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 3

Overview

1) Coordination = communication + synchronization
2) Semaphores
3) Conditional critical regions
4) Monitors

These lecture notes are based on slides kindly
provided by Burns and Wellings

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 4

Where are we?

1) Coordination = communication + synchronization
Mutual exclusion and condition synchronization
Busy waiting
Suspend and resume

2) Semaphores
3) Conditional critical regions
4) Monitors

These lecture notes are based on slides kindly
provided by Burns and Wellings

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 5

Synchronisation and Communication

Synchronisation:
Satisfies constraints on interleaving of actions of processes
E.g. action by process A occurs after action by process B

Communication:
Passing of information from one process to another
Usually based upon either shared variables or message
passing

Concepts are linked:
Communication requires synchronisation
Synchronisation = contentless communication

Synchronization and communication are essential for
correct behavior of a concurrent program

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 6

Coordination

Coordination mechanisms in general:
Message Passing
Shared Memory
Semaphores (binary and counting)
Mutexes and Condition Variables
Readers/Writers Locks
Tasking and Rendezvous
Event Flags

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 7

Shared Variable Communication

Examples:
Busy waiting
Semaphores
Monitors

Unrestricted use of shared variables is unreliable and
unsafe due to multiple update problems
Consider two processes updating a shared variable,
X, with the assignment: X:= X+1

Load the value of X into some register
Increment the value in the register by 1 and
Store the value in the register back to X

As the three operations are not indivisible, two processes
simultaneously updating the variable could follow an
interleaving that would produce an incorrect result

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 8

Mutual Exclusion

Critical section:
Sequence of statements that must appear to be executed
indivisibly

Mutual exclusion:
The synchronisation required to protect a critical section
(Dijkstra 1965)

Atomicity is assumed to be present at the memory
level

If one process is executing X:= 5, simultaneously with another
executing X:= 6, the result will be either 5 or 6 (not some
other value)

If two processes are updating a structured object, this
atomicity will only apply at the single word element level

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 9

Condition Synchronisation

Condition synchronisation
Process wants to perform operation A
A is safe/sensible only if another process has taken some
other action B

Example: bounded buffer
Producer processes must block if buffer full
Consumer processes must block if buffer empty

head tail

Is mutual
exclusion
necessary?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 10

Busy Waiting

For synchronisation, processes may set and check
shared variables that are acting as flags (spin-locks)
Works well for condition synchronisation
However:

No simple method for mutual exclusion
Queuing discipline (fairness) difficult to ensure
Correctness difficult to prove
Misuse of shared variables by rogue tasks may corrupt
entire system

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 11

Suspend and Resume

Busy wait algorithms are in general inefficient
Processes use processing cycles when they cannot perform
useful work
On multiprocessor systems, they can give rise to excessive
traffic on the memory bus or network

Alternative:
Remove a process from set of runnable processes if the
condition for which it is waiting does not hold (process
suspension)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 12

Process States

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Waiting Dependent
Termination

Waiting Child
Initialization

Suspended

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 13

Java's suspend() and resume()

The problem: testing and suspension are not atomic
Race condition may occur

Java has therefore made these methods obsolete

boolean flag;
final boolean up = true;
final boolean down = false;

class FirstT extends Thread {
public void run() {

...
if (flag == down) {

suspend();
};
flag = down;
...

}
}

class SecondT extends Thread {
FirstT T1;

public SecondT(FstT T) {
super();
T1 = T;

}

public void run() {
...
flag = up;
T1.resume();
...
}

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 14

Safe Suspension

Solutions to race condition problem use a two-stage
suspend operation:

P1 announces intent to suspend
Until suspension of P1, resume operation will be deferred

Ada provides safe version as part of Real-Time Annex

with Ada.Synchronous_TaskControl;
use Ada.Synchronous_TaskControl;
...
Flag: Suspension_Object;
...
task body P1 is
begin

...
Suspend_Until_True(Flag);
...

end P1;

task body P2 is
begin

...
Set_True(Flag);
...

end P2;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 15

Where are we?

1) Coordination = communication + synchronization
2) Semaphores

Review of operation
Ada, POSIX, LegOS
Criticisms

3) Conditional critical regions
4) Monitors

These lecture notes are based on slides kindly
provided by Burns and Wellings

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 16

Semaphores

Operations on Semaphores
INIT(S, Value)

Initialize S to Value
WAIT(S), or P(S):

If S > 0:
Decrement S by 1

Otherwise:
Delay process until S > 0
Then decrement S by 1

SIGNAL(S), or V(S):
Increment S by 1

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 17

Concurrency and Semaphores

All semaphore operations are atomic
Two processes executing P or V operations on the
same semaphore:

Cannot interfere with each other
Cannot fail during semaphore operation

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 18

process P1
(* waiting process *)
statement X
wait (consyn)
statement Y

end P1

process P2
(* signalling proc *)
statement A
signal (consyn)
statement B

end P2

var consyn : semaphore (* init 0 *)

In what order will the statements execute ?

Condition synchronisation

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 19

Mutual Exclusion

process P2
statement A
wait (mutex)

statement B1
statement B2

signal (mutex)
statement C

end P2

process P1
statement X
wait (mutex)

statement Y1
statement Y2

signal (mutex)
statement Z

end P1

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

In what order will the statements execute ?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 20

Bounded Buffer with Semaphores

Producer() {
while (1) {

item = produce();
wait(sem-free);
wait(sem-mutex);
buffer[in] = item;
in = (in + 1) % MAX;
signal(sem-mutex);
signal(sem-avail);

}
}

Consumer() {
while (1) {

wait(sem-avail);
wait(sem-mutex);
item = buffer[out];
out = (out + 1) % MAX;
signal(sem-mutex);
signal(sem-free);
consume(item);

}
}

sem_init(sem-free, MAX);
sem_init(sem-avail, 0);
sem_init(sem-mutex, 1);
in = out = 0;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 21

Deadlock

Two processes are deadlocked if each is holding a
resource while waiting for a resource held by the
other

task B;
task body B is
begin
...
Wait(Y);
Wait(X);
...
end B;

task A;
task body A is
begin
...
Wait(X);
Wait(Y);
...
end A;

type Sem is ...;
X : Sem := 1;
Y : Sem := 1;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 22

Livelock

Two processes are livelocked if each is executing but
neither is able to make progress

type Flag is (Up, Down);
Flag1 : Flag := Up;

task B;
task body B is
begin

...
while Flag1 = Up loop

null;
end loop;
...

end A;

task A;
task body A is
begin

...
while Flag1 = Up loop

null;
end loop;
...

end A;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 23

Binary and quantity semaphores

A general semaphore is a non-negative integer
Its value can rise to any supported positive number

A binary semaphore only takes the value 0 and 1
The signalling of a semaphore which has the value 1 has
no effect - the semaphore retains the value 1

A general semaphore can be implemented by two
binary semaphores and an integer (Homework)
With a quantity semaphore the amount to be
decremented by WAIT (and incremented by
SIGNAL) is given as a parameter; e.g. WAIT (S, i)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 24

package Semaphore_Package is
type Semaphore(Initial : Natural) is limited private;
procedure Wait (S : Semaphore);
procedure signal (S : Semaphore);

private
type Semaphore ...

end Semaphore_Package;

Example semaphore programs in Ada

Recall: the essence of abstract data types is that they
can be used without knowledge of their
implementation

Ada does not directly support semaphores
But can construct wait and signal procedures from Ada
synchronisation primitives

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 25

The Bounded Buffer in Ada

package Buffer is
procedure Append (I : Integer);
procedure Take (I : out Integer);

end Buffer;

package body Buffer is
Size : constant Natural := 32;
type Buffer_Range is mod Size;
Buf : array (Buffer_Range) of Integer;
Top, Base : Buffer_Range := 0;

Mutex : Semaphore(1);
Item_Available : Semaphore(0);
Space_Available : Semaphore(Size);

procedure Append (I : Integer) is separate;
procedure Take (I : out Integer) is separate;

end Buffer;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 26

procedure Append(I : Integer) is
begin

Wait(Space_Available);
Wait(Mutex);

Buf(Top) := I;
Top := Top+1

Signal(Mutex);
Signal(Item_Available);

end Append;
procedure Take(I : out Integer) is
begin

Wait(Item_Available);
Wait(Mutex);

I := BUF(base);
Base := Base+1;

Signal(Mutex);
Signal(Space_Available);

end Take;

The Bounded Buffer in Ada cont.

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 27

Semaphores in C/POSIX

Few modern programming languages support
semaphores directly – but many OSs do
POSIX provides counting semaphores for
communication between processes or threads

#include <time.h> typedef ... sem_t;

int sem_init(sem_t *sem, int pshared, unsigned int value)
int sem_destroy(sem_t *sem);

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_timedwait(sem_t *sem, const struct timespec *abstime);

int sem_post(sem_t *sem);
int sem_getvalue(sem_t *sem, int *value);

pshared is 1 iff the semaphore can be used between processes;
otherwise, can only be used between threads of the same process

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 28

legOS Counting Semaphores

// The pshared argument is there only for
// backwards-compatibility and can be ignored
int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_post(sem_t *sem);

Are analogous to POSIX counting semaphores:

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 29

Criticisms of semaphores

Semaphores are an elegant low-level synchronisation
primitive (and historically important)
However, their use is error-prone

If a semaphore is omitted or misplaced, the entire
program may collapse
Mutual exclusion may not be assured and deadlock may
appear just when the software is dealing with a rare but
critical event

A more structured synchronisation primitive is
required for the RT domain
No high-level concurrent programming language
relies entirely on semaphores

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 30

Where are we?

1) Coordination = communication + synchronization
2) Semaphores
3) Conditional critical regions
4) Monitors

These lecture notes are based on slides kindly
provided by Burns and Wellings

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 31

Conditional Critical Regions (CCR)

Critical region:
A section of code that is guaranteed to be executed in
mutual exclusion

Shared variables are grouped together into named
regions and are tagged as being resources
Processes are prohibited from entering a region in
which another process is already active
Condition synchronisation is provided by guards

When a process wishes to enter a critical region it
evaluates the guard (under mutual exclusion)
if the guard evaluates true it may enter
if it is false the process is delayed

As with semaphores, no guarenteed access order

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 32

The Bounded Buffer I

program buffer_eg;
type buffer_t is record

slots : array(1..N) of character;
size : integer range 0..N;
head, tail : integer range 1..N;

end record;

buffer : buffer_t;
resource buf : buffer;

process producer is separate;
process consumer is separate;

end.

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 33

The Bounded Buffer II

process producer;
loop

region buf when buffer.size < N do
-- place char in buffer etc

end region
end loop;

end producer

process consumer;
loop

region buf when buffer.size > 0 do
-- take char from buffer etc

end region
end loop;

end consumer

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 34

A Problem

A version of CCRs has been implemented in Edison
One problem with CCRs:

Processes must re-evaluate their guards every time a CCR
naming that resource is left
A suspended process must become executable again in
order to test the guard

If guard is still false, process must return to the
suspended state

Edison is a language intended for embedded applications,
implemented on multiprocessor systems

Each processor only executes a single process so it may
continually evaluate its guards if necessary

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 35

Where are we?

1) Coordination = communication + synchronization
2) Semaphores
3) Conditional critical regions
4) Monitors

Condition variables (WAIT + SIGNAL)
POSIX mutexes and condition variables
Nested monitor calls

These lecture notes are based on slides kindly
provided by Burns and Wellings

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 36

Monitors

Another problem with CCRs:
Can be dispersed throughout the program

Monitors provide encapsulation, and efficient
condition synchronisation
The critical regions are written as procedures and are
encapsulated together into a single module:

All variables that must be accessed under mutual
exclusion are hidden
All procedure calls into the module are guaranteed to be
mutually exclusive
Only the operations are visible outside the monitor

Monitors have been implemented in Modula-1 and
Concurrent Pascal

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 37

The Bounded Buffer I

monitor buffer;
export append, take;
var (*declare necessary vars*)

procedure append (I : integer);
...

end;

procedure take (var I : integer);
...

end;
begin

(* initialisation *)
end; How do we get condition

synchronisation?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 38

Condition Variables

Different semantics exist
In Hoare’s monitors:

A condition variable is acted upon by two semaphore-like
operators WAIT and SIGNAL

When a process issues a WAIT:
Process is blocked (suspended) and placed on a queue
associated with the condition variable
Note: a wait on a condition variable always blocks unlike
a wait on a semaphore

A blocked process releases its hold on the monitor
Allows another process to enter

A SIGNAL releases one blocked process
If no process is blocked then the signal has no effect

 Note that a signal on a semaphore always has an effect on the
semaphore

 The semantics of wait and signal is more aking to suspend and
resume

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 39

The Bounded Buffer II
monitor buffer;

export append, take;

var BUF : array[. . .] of integer;
top, base : 0..size-1; NumberInBuffer : integer;

spaceavailable, itemavailable : condition;

procedure append (I : integer);
begin

if NumberInBuffer = size then
wait(spaceavailable);

end if;
BUF[top] := I;
NumberInBuffer := NumberInBuffer+1;
top := (top+1) mod size;
signal(itemavailable)

end append;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 40

procedure take (var I : integer);
begin

if NumberInBuffer = 0 then
wait(itemavailable);

end if;
I := BUF[base];
base := (base+1) mod size;
NumberInBuffer := NumberInBuffer-1;
signal(spaceavailable);

end take;

begin (* initialisation *)
NumberInBuffer := 0;
top := 0; base := 0

end;

The Bounded Buffer III

A process appending
an item will, however,
signal this suspended
process when an item
does become available.

If a process calls
take when there is
nothing in the buffer
then it will become
suspended on
itemavailable.

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 41

The Semantics of SIGNAL

How to assure mutual exclusion between the
signalling process and the process that is restarted?
Different options:

1) A signal is allowed only as the last action of a process
before it leaves the monitor

2) A signal operation has the side-effect of executing a
return statement, i.e. the process is forced to leave

3) A signal operation which unblocks another process has
the effect of blocking itself; this process will only execute
again when the monitor is free (Hoare 1974)

4) A signal operation which unblocks a process does not
block the caller. The unblocked process must gain access
to the monitor again

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 42

P1 P2 P3

produce

leave

signal NotEmpty

produce

produce

consume

time

wait NotFull

signal NotFull

leave

leave

SIGNAL – Example

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 43

POSIX Mutexes and Condition Variables

POSIX Mutexes and Condition Variables:
Equivalent to monitor for communication and
synchronisation between threads
Provide functionality of monitor, with procedural
interface

Require same address space
Not applicable across process boundaries

Are a more structured alternative to semaphores

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 44

POSIX Mutexes and Condition Variables

Mutexes and condition variables have associated
attribute objects
Example attributes:

set the semantics for a thread trying to lock a mutex that it
already has locked
allow sharing of mutexes and condition variables
between processes
set/get priority ceiling
set/get the clock used for timeouts

typedef ... pthread_mutex_t;
typedef ... pthread_mutexattr_t;
typedef ... pthread_cond_t;
typedef ... pthread_condattr_t;

Here we will use default attributes only

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 45

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

/* initialises a mutex with certain attributes */

int pthread_mutex_destroy(pthread_mutex_t *mutex);
/* destroys a mutex */
/* undefined behaviour if the mutex is locked */

int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr);

/* Initialises a condition variable */
/* with certain attributes */

int pthread_cond_destroy(pthread_cond_t *cond);
/* Destroys a condition variable */
/* undefined, if threads are */
/* waiting on the cond. variable */

POSIX Interface I

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 46

int pthread_mutex_lock(pthread_mutex_t *mutex);
/* lock the mutex; if locked already suspend calling thread */
/* the owner of the mutex is the thread which locked it */

int pthread_mutex_trylock(pthread_mutex_t *mutex);
/* as lock but gives an error if mutex is already locked */

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
const struct timespec *abstime);

/* as lock but gives an error if mutex cannot be obtained */
/* by the timeout */

int pthread_mutex_unlock(pthread_mutex_t *mutex);
/* unlocks the mutex if called by the owning thread */
/* undefined behaviour if calling thread is not the owner */
/* undefined behaviour if the mutex is not locked } */
/* when successful, a blocked thread is released */

POSIX Interface II

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 47

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

/* called by thread which owns a locked mutex */
/* undefined behaviour if the mutex is not locked */
/* atomically blocks the caller on the cond variable and */
/* releases the lock on mutex */
/* a successful return indicates the mutex has been locked */

int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t *mutex, const struct timespec *abstime);

/* the same as pthread_cond_wait, except that a error is */
/* returned if the timeout expires */

POSIX Interface III

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 48

int pthread_cond_signal(pthread_cond_t *cond);
/* unblocks at least one blocked thread */
/* no effect if no threads are blocked */

int pthread_cond_broadcast(pthread_cond_t *cond);
/* unblocks all blocked threads */
/* no effect if no threads are blocked */

/* all unblocked threads automatically contend for */
/* the associated mutex */

All functions return 0 if successful

POSIX Interface IV

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 49

POSIX Bounded Buffer I
#define BUFF_SIZE 10

typedef struct {
pthread_mutex_t mutex;
pthread_cond_t buffer_not_full;
pthread_cond_t buffer_not_empty;
int count, first, last;
int buf[BUFF_SIZE];

} buffer;

int append(int item, buffer *B) {
PTHREAD_MUTEX_LOCK(&B->mutex);

while(B->count == BUFF_SIZE) {
PTHREAD_COND_WAIT(&B->buffer_not_full, &B->mutex);

}

/* put data in the buffer and update count and last */
PTHREAD_MUTEX_UNLOCK(&B->mutex);
PTHREAD_COND_SIGNAL(&B->buffer_not_empty);
return 0;

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 50

int take(int *item, buffer *B) {
PTHREAD_MUTEX_LOCK(&B->mutex);

while(B->count == 0) {
PTHREAD_COND_WAIT(&B->buffer_not_empty, &B->mutex);

}

/* get data from the buffer and update count and first */
PTHREAD_MUTEX_UNLOCK(&B->mutex);
PTHREAD_COND_SIGNAL(&B->buffer_not_full);
return 0;

}

int initialize(buffer *B) {
/* set the attribute objects and initialize the */
/* mutexes and condition variable */

}

POSIX Bounded Buffer II

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 51

Nested Monitor Calls

What to do if a process having made a nested
monitor call is suspended in another monitor?

The mutual exclusion in the last monitor call will be
relinquished by the process (semantics of wait)
However, mutual exclusion will not be relinquished by
processes in monitors from which the nested calls have
been made; processes that attempt to invoke procedures in
these monitors will become blocked

Approaches:
Maintain the lock: e.g. POSIX, Java
Prohibit nested procedure calls altogether: e.g. Modula-1
Provide constructs to let a monitor procedure release its
mutual exclusion lock during remote calls

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 52

Criticisms of Monitors

The monitor gives a structured and elegant solution
to mutual exclusion problems such as the bounded
buffer
It does not, however, deal well with condition
synchronization — requiring low-level condition
variables
All the criticisms surrounding the use of semaphores
apply equally to condition variables

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 53

Summary I

Critical section — code that must be executed under
mutual exclusion
Producer-consumer system — two or more
processes exchanging data via a finite buffer
Busy waiting — a process continually checking a
condition to see if it is now able to proceed
Livelock — an error condition in which one or more
processes are prohibited from progressing whilst
using up processing cycles
Deadlock — a collection of suspended processes that
cannot proceed
Indefinite postponement — a process being unable
to proceed as resources are not made available

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 54

Summary II

Semaphore — a non-negative integer that can only
be acted upon by WAIT and SIGNAL atomic
procedures
Two more structured primitives are:

Conditional critical regions
Monitors

Suspension in a monitor is achieved using condition
variable

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_19.sdd Foil 55

To Go Further

[Burns and Wellings 2001] – Chapter 8
[Gallmeister 1995] - Chapter 4

