
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 1

Real-Time Systems Programming

Synchronization and
Communication

Part 2

Summer-Semester 2002
Lecture 20

21 June 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 2

Overview

1) Language support for synchronization
2) Communication and synchronisation based on

message passing

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 3

Where are we?

1) Language support for synchronization
Ada 95: protected objects
Java: synchronized methods

2) Communication and synchronisation based on
message passing

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 4

Ada: Protected Objects

A protected object:
Encapsulates data items and allows access to them only
via protected actions — protected subprograms or
protected entries
The language guarantees that the data will only be
updated under mutual exclusion, and that all data read
will be internally consistent
May be declared as a type or as a single instance

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 5

protected type Name (Discriminant) is
function Fname(Params)

return Type_Name;
procedure Pname(Params);
entry E1_Name(Params);

private
entry E2_Name(Params);
O_Name : T_Name;

end Name;

Syntax

Only subprograms,
entries and object
declarations

Only subprograms
and entries

No type declarations

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 6

Protected Types and Mutual Exclusion
protected type Shared_Data(Initial : Data_Item) is

function Read return Data_Item;
procedure Write (New_Value : in Data_Item);

private
The_Data : Data_Item := Initial;

end Shared_Data_Item;

protected body Shared_Data_Item is
function Read return Data_Item is
begin

return The_Data;
end Read;

procedure Write (New_Value : in Data_Item) is
begin

The_Data := New_Value;
end Write;

end Shared_Data_Item;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 7

Protected Procedures and Functions

A protected procedure provides mutually exclusive
read/write access to the data encapsulated
Concurrent calls to Write will be executed one at a
time
Protected functions provide concurrent read only
access to the encapsulated data
Concurrent calls to Read may be executed
simultaneously
Procedure and function calls are mutually exclusive
The core language does not define which calls take
priority

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 8

Protected Entries and Synchronisation
A protected entry is similar to a protected procedure

Calls are executed in mutual exclusion
Have read/write access to the data

A protected entry can be guarded by a boolean
expression (called a barrier)
If this barrier evaluates to false when the entry call is
made:

Calling task is suspended and remains suspended while
barrier evaluates to false, or
other tasks currently active inside the protected unit

Hence protected entry calls can be used to implement
 condition synchronisation

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 9

Ada Bounded Buffer I

-- a bounded buffer
Buffer_Size : constant Integer :=10;
type Index is mod Buffer_Size;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer is array (Index) of Data_Item;

protected type Bounded_Buffer is
entry Get (Item : out Data_Item);
entry Put (Item : in Data_Item);

private
First : Index := Index'First;
Last : Index := Index'Last;
Num : Count := 0;
Buf : Buffer;

end Bounded_Buffer;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 10

protected body Bounded_Buffer is

entry Get (Item : out Data_Item)
when Num /= 0 is

begin
Item := Buf(First);
First := First + 1;
Num := Num - 1;

end Get;

entry Put (Item : in Data_Item)
when Num /= Buffer_Size is

begin
Last := Last + 1;
Buf(Last) := Item
Num := Num + 1;

end Put;
end Bounded_Buffer;

My_Buffer : Bounded_Buffer;

Ada Bounded Buffer II

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 11

The Readers and Writers Problem

Example: a file which needs mutual exclusion
between writers and reader
not between multiple readers

Protected objects can implement the readers/writers
algorithm if

Read operation is encoded as a function and
Write encoded as a procedure

However:
Cannot easily control the order of access
Cannot prefer writes over reads
If the read or write operations are potentially blocking,
then they cannot be made from within a protected object

Must implement access control protocol for the read
and write operations (rather than encapsulate them)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 12

Readers/Writers I
with Data_Items; use Data_Items;
package Readers_Writers is

-- for some type Item
procedure Read (I : out Item);
procedure Write (I : Item);

end Readers_Writers;

package body Readers_Writers is

procedure Read_File(I : out Item) is separate;
procedure Write_File(I : Item) is separate;

protected Control is
entry Start_Read;
procedure Stop_Read;
entry Request_Write;
entry Start_Write;
procedure Stop_Write;

private
Readers : Natural := 0; -- no. of current readers
Writers : Boolean := False; -- Writers present

end Control;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 13

Readers/Writers II

procedure Read (I : out Item) is
begin

Control.Start_Read;
Read_File(I);

Control.Stop_Read;
end Read;

procedure Write (I : Item) is
begin

Control.Request_Write; -- indicate writer present
Control.Start_Write;
Write_File(I);

Control.Stop_Write;
end Write;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 14

protected body Control is

end Control;
end Readers_Writers;

Readers/Writers III

entry Start_Read
when not Writers and Request_Write'Count = 0 is

begin Readers := Readers + 1; end Start_Read;

procedure Stop_Read is
begin Readers := Readers - 1; end Stop_Read;

entry Request_Write
when not Writers is

begin Writers := True; end Request_Write;

entry Start_Write
when Readers = 0 is

begin null; end Start_Write;

procedure Stop_Write is
begin
Writers := False;

end Stop_Write;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 15

Ada: Protected Objects

A protected object:
Encapsulates data items and allows access to them only
via protected actions — protected subprograms or
protected entries
The language guarantees that the data will only be
updated under mutual exclusion, and that all data read
will be internally consistent
May be declared as a type or as a single instance

 Ada's protected objects are similar to objects –
however, they do not support inheritance

 Java provides a mechanism by which monitors
can be implemented in the context of classes and
objects

When a method is labeled synchronized:
Access to the method can only proceed once the lock
associated with the object has been obtained
Hence synchronized methods have mutually exclusive access
to the data encapsulated by the object, if that data is only
accessed by other synchronized methods
However:

Non-synchronized methods do not require the lock and,
therefore, can be called at any time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 16

Java: Synchronized Methods

Java provides a mechanism by which monitors can
be implemented in the context of classes and objects
There is a lock associated with each object which
cannot be accessed directly by the application but is
affected by

the method modifier synchronized
block synchronization

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 17

Example of Synchronized Methods

class SharedInteger
{
private int theData;

public SharedInteger(int initialValue)
{ theData = initialValue; };

public synchronized int read()
{ return theData; };

public synchronized void write(int newValue)
{ theData = newValue; };

public synchronized void incrementBy(int by)
{ theData = theData + by; };

}

SharedInteger myData = new SharedInteger(42);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 18

Block Synchronization

The synchronized keyword takes as a parameter
an object whose lock it needs to obtain before it can
continue
Hence synchronized methods are effectively
implementable as:

public int read()
{
synchronized(this) {
return theData;

}
}

However with careful use, this facility augments the basic
model and allows more expressive synchronization constraints
to be programmed

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 19

Warning

Monitor-like mechanisms:
Encapsulate synchronization constraints associated with
an object into a single place in the program
Can understand the synchronization associated with a
particular object by just looking at the object itself

However, this can be undermined with synchronized
block:

Other objects can name an object in a synchronized
statement
No composability

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 20

Static Data

Static data are shared between all objects created
from the class
To obtain mutually exclusive access to this data:

All objects must be locked
In Java, classes themselves are also objects and
therefore there is a lock associated with the class
This lock may be accessed by

labeling a static method with the synchronized
modifier, or
by identifying the class's object (the Object class
associated with the object) in a synchronized block
statement

However: this class-wide lock is not obtained when
synchronizing on the object

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 21

Static Data Example
class StaticSharedVariable
{
private static int shared;
...

public synchronized int Read()
{
synchronized(this.getClass())
{
return shared;

};
}

public static void Write(int I)
{
synchronized(this.getClass())
{
shared = I;

};
};

}

Could have used:
public static synchronized void Write(int I)

 The wait method always blocks the calling thread
and releases the lock associated with the object

 The notify method wakes up one waiting thread
(Java does not define which one; RT Java does)
 Does not release the lock
 The woken thread must still wait until it can obtain

the lock before it can continue
 The notifyAll method wakes up all waiting

thread
 All awoken threads must contend for lock when it

becomes free

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 22

Waiting and Notifying

To obtain conditional synchronization requires the
methods provided in the predefined object class

These methods should be used only from within
methods which hold the object lock
If called without the lock, the exception
IllegalMonitorStateException is thrown

public void wait();
// throws IllegalMonitorStateException

public void notify();
// throws IllegalMonitorStateException

public void notifyAll();
// throws IllegalMonitorStateException

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 23

Java Bounded Buffer I

public class BoundedBuffer {
private int buffer[];
private int first;
private int last;
private int numberInBuffer = 0;
private int size;

public BoundedBuffer(int length) {
size = length;
buffer = new int[size];
last = 0;
first = 0;

};

There are no explicit condition variables
If more than one condition exists and they are not
mutually exclusive:

Awoken thread should evaluate the condition on which
it is waiting

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 24

public synchronized void put(int item)
throws InterruptedException

{
if (numberInBuffer == size) {
wait();

};
last = (last + 1) % size ;
numberInBuffer++;
buffer[last] = item;
notify();

};

Java Bounded Buffer II

public synchronized int get()
throws InterruptedException

{
if (numberInBuffer == 0) {
wait();

};
first = (first + 1) % size ;
numberInBuffer--;
notify();
return buffer[first];

};
}

Mutually exclusive waiting

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 25

The Readers-Writers Problem revisited

Standard solution in monitors is to have two
condition variables: OkToRead and OkToWrite
This cannot be directly expressed using a single class

public class ReadersWriters // first solution
{

private int readers = 0;
private int waitingWriters = 0;
private boolean writing = false;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 26

Readers-Writers Problem II

public synchronized void StartWrite()
throws InterruptedException

{
while(readers > 0 || writing)
{
waitingWriters++;
wait();
waitingWriters--;

}
writing = true;

}

Loop to re-test
the condition

Wakeup everyone

public synchronized void StopWrite()
{
writing = false;
notifyAll();

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 27

Readers-Writers Problem III
public synchronized void StartRead()

throws InterruptedException
{
while(writing || waitingWriters > 0) wait();
readers++;

}

Arguably, this is inefficient as all threads are woken

public synchronized void StopRead()
{
readers--;
if(readers == 0) notifyAll();

}
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 28

Implementing Condition Variables

Approach: use another class and block synchronization
1) Get lock on condition variable on which you might want to

sleep or notify
2) Then get monitor lock

public class ConditionVariable {
public boolean wantToSleep = false;

}

public class ReadersWriters // Alternative solution
{
private int readers = 0;
private int waitingReaders = 0;
private int waitingWriters = 0;
private boolean writing = false;

ConditionVariable OkToRead = new ConditionVariable();
ConditionVariable OkToWrite = new ConditionVariable();

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 29

public void StartWrite() throws InterruptedException
{
synchronized(OkToWrite) // get condition variable lock
{
synchronized(this) // get monitor lock
{
if(writing | readers > 0) {
waitingWriters++;
OkToWrite.wantToSleep = true;

} else {
writing = true;
OkToWrite.wantToSleep = false;

}
} //give up monitor lock
if(OkToWrite.wantToSleep) OkToWrite.wait();

}
}

Note order of synchronized statements

Implementing Condition Variables II

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 30

public void StopWrite()
{
synchronized(OkToRead)
{
synchronized(OkToWrite)
{
synchronized(this)
{
if(waitingWriters > 0) {
waitingWriters--;
OkToWrite.notify(); // wakeup one writer

} else {
writing = false;
OkToRead.notifyAll(); // wakeup all readers
readers = waitingReaders;
waitingReaders = 0;

}
}

}
}

}

Important for all methods to use the same order
– otherwise deadlock will occur

Implementing Condition Variables III

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 31

public void StartRead()
throws InterruptedException

{
synchronized(OkToRead) {
synchronized(this)
{
if(writing | waitingWriters > 0) {
waitingReaders++;
OkToRead.wantToSleep = true;

} else {
readers++;
OkToRead.wantToSleep = false;

}
}
if(OkToRead.wantToSleep) OkToRead.wait();

}
}

Implementing Condition Variables IV

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 32

public void StopRead()
{
synchronized(OkToWrite)
{
synchronized(this)
{
readers--;
if(readers == 0 & waitingWriters > 0)
{
waitingWriters--;
OkToWrite.notify();

}
}

}
}

}

Implementing Condition Variables V

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 33

Where are we?

1) Language support for synchronization
2) Communication and synchronisation based on

message passing
Synchronisation models
Process naming
Message structures

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 34

Message-Based Comm. and Synchronisation

Use of a single construct for both synchronisation
and communication
Three issues:

the model of
synchronisation
the method of
process naming
the message structure

Process P1 Process P2

Send message
Receive message

time time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 35

Process Synchronisation

Variations in the process synchronisation model arise
from the semantics of the send operation
Asynchronous (or no-wait) (e.g. POSIX)

Requires buffer space. What happens if the buffer is full?

Process P1 Process P2

send message

receive message

message

time time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 36

Process Synchronisation

Synchronous (e.g. CSP, occam2)
No buffer space required
Known as a rendezvous

Process P1 Process P2

send message

receive message

time time

blocked M

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 37

Process Synchronisation

Remote invocation (e.g. Ada)
Known as an extended rendezvous

Process P1 Process P2

send message

receive message

time time

blocked

M

reply

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 38

Asynchronous and Synchronous Sends

Asynchronous communication can implement
synchronous communication:

 P1 P2
 asyn_send (M) wait (M)
 wait (ack) asyn_send (ack)

Two synchronous communications can be used to
construct a remote invocation:

 P1 P2
syn_send (message) wait (message)
 wait (reply) ...
 construct reply
 ... syn_send (reply)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 39

Disadvantages of Asynchronous Send

Potentially infinite buffers are needed to store unread
messages
Most sends are programmed to expect an
acknowledgement
More communications are needed with the
asynchronous model, hence programs are more
complex
It is more difficult to prove the correctness of the
complete system
Where asynchronous communication is desired with
synchronised message passing then buffer processes
can be constructed – but this can be costly

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 40

Process Naming

The issues:
direction versus indirection
symmetry

Direct naming: the sender explicitly names the
receiver

Structure: send <message> to <process-name>
Advantage: Simplicity

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 41

Process Naming

Indirect naming: the sender names an intermediate
entity (e.g. a channel, mailbox, link or pipe)

Structure: send <message> to <mailbox>
Message passing can still be synchronous
Advantage: Aids the decomposition of the software
A mailbox can be seen as an interface between program
parts

Possible structures of the intermediary:
Many-to-one
Many-to-manyh
One-to-one
One-to-many

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 42

Process Naming

A naming scheme is symmetric if both sender and
receiver name each other (directly or indirectly)
send <message> to <process-name>
wait <message> from <process-name>

send <message> to <mailbox>
wait <message> from <mailbox>
It is asymmetric if the receiver names no specific
source but accepts messages from any process (or
mailbox)
wait <message>

Fits the client-server paradigm

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 43

Message Structure

Ideally, a language allows any data object of any
defined type (predefined or user) to be transmitted in
a message

This is not trivial:
Data may be represented differently at sender and
receiver
How to deal with pointers?

Early languages restricted the data types to be transmitted
(e.g., occam-1)

Need to convert to a standard format for transmission
across a network in a heterogeneous environment
OS allow only arrays of bytes to be sent

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 44

The occam2 Model

Occam2 supports indirect symmetric synchronous
message passing
Occam2 processes are not named – therefore use
named channels
Each channel restricted to single writers and single
readers
ch ! X -- Write value of expression X

-- onto channel ch

ch ? Y -- Read from channel ch
-- into variable y

-- This can be viewed as
-- distributed assignment Y := X

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 45

The Ada Model

Ada supports direct asymmetric remote invocation
Based on a client/server model of interaction
The server declares a set of services that it is
prepared to offer other tasks (its clients)
It does this by declaring one or more public entries
in its task specification
Each entry identifies the name of the service, the
parameters that are required with the request, and the
results that will be returned
This has many similarities with a procedure call
Will not discuss this further in class – is covered in
additional lecture slides appended here

Ada has remote invocation with direct asymmetric
naming
Communication in Ada requires one task to define
an entry and then, within its body, accept any
incoming call. A rendezvous occurs when one task
calls an entry in another
Selective waiting allows a process to wait for more
than one message to arrive.
Ada’s select statement has two extra facilities: an
else part and a terminate alternative

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 46

Summary

The semantics of message-based communication are
defined by three issues:

the model of synchronisation
the method of process naming
the message structure

Variations in the process synchronisation model arise
from the semantics of the send operation.

asynchronous, synchronous or remote invocation
Remote invocation can be made to appear syntactically
similar to a procedure call

Process naming involves two distinct issues
direct or indirect
symmetry

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 47

Summary

POSIX mutexes and condition variables give
monitors with a procedural interface
Ada’s protected objects give structured mutual
exclusion and high-level synchronization via barriers
Java’s synchronized methods provide monitors
within an object-oriented framework

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 48

Problem Set 10 – Due 3 July 2002
1) Implement a binary semaphore using the counting semaphore of POSIX

and illustrate its operation. (2 pts)
2) Using binary semaphores from Problem 1, implement a counting

semaphore and illustrate its operation. (2 pts)
3) Show how the reader/writers problem can be implemented in Java

where priority is given to readers and where writers are guaranteed to be
serviced in FIFO order. (2 pts)

4) Modify the robot you built last week such that for each of the
exceptional events identified (a crossed line is thicker than 10cm, or an
obstacle is encountered, or a button is pressed, or the time-out occurs), it
performs a particular driving maneuver specific to that event (e.g., turn
left 90 degrees if a button is pressed). Each driving maneuver constitutes
a critical region that must not be interrupted by another driving
maneuver. Implement this using semaphores. (3 pts)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 49

Announcement

Excursion to Philips Medical Systems GmbH
(Hamburg)

July 11, 2002, departing CAU at 11:00

If interested, please contact rvh@informatik.uni-kiel.de
The bus has 9 spaces – first come, first serve

For current information, visit http://www.informatik.uni-kiel.de/inf/von-
Hanxleden/Exkursionen/ss02-philips.html

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 50

Appendix: The Ada Model

Ada supports direct asymmetric remote invocation
Based on a client/server model of interaction
The server declares a set of services that it is
prepared to offer other tasks (its clients)
It does this by declaring one or more public entries
in its task specification
Each entry identifies the name of the service, the
parameters that are required with the request, and the
results that will be returned
This has many similarities with a procedure call
Will not discuss this further in class – is covered in
additional lecture slides appended here

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 51

Entries

entry_declaration ::=
entry defining_identifier[(discrete_subtype_definition)]

parameter_profile;

entry Syn;
entry Send(V : Value_Type);
entry Get(V : out Value_Type);
entry Update(V : in out Value_Type);
entry Mixed(A : Integer; B : out Float);
entry Family(Boolean)(V : Value_Type);

Format:

Examples:

Note that data can be transferred in either direction
– hence this is usually not referred to as „message
passing“, but instead as extended rendezvous

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 52

Example

task type Telephone_Operator is
entry Directory_Enquiry(

Person : in Name;
Addr : Address;
Num : out Number);

-- other services possible
end Telephone_Operator;

An_Op : Telephone_Operator;

-- client task executes
An_Op.Directory_Enquiry ("Stuart_Jones",

"11 Main, Street, York"
Stuarts_Number);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 53

Accept Statement

accept_statement ::=
accept entry_direct_name[(entry_index)]

parameter_profile [do
handled_sequence_of_statements

end [entry_identifier]];

accept Family(True)(V : Value_Type) do
-- sequence of statements

exception
-- handlers

end Family;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 54

Server Task Example

task body Telephone_Operator is
begin

...
loop

--prepare to accept next call
accept Directory_Enquiry (...) do

-- look up telephone number

exception
when Illegal_Number =>

-- propagate error to client

end Directory_Enquiry;
-- undertake housekeeping

end loop;
...

end Telephone_Operator;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 55

Client Task Example

task type Subscriber;
task body Subscriber is
begin

...
loop

...
An_Op.Directory_Enquiry(...);
...

end loop;
...

end Subscriber;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 56

Protocol

T.E(A,B)

accept E(X : int; Y: out int)
do

-- use X

-- undertake computation

-- produce Y

-- complete computation

end E;

task T is ...

A

B

Both tasks must be prepared to enter into the communication
If one is ready and the other is not, then the ready one waits
for the other
Once both are ready, the client's parameters are passed to the
server
The server then executes the code inside the accept statement
At the end of the accept, the results are returned to the client
Both tasks are then free to continue independently

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 57

Bus Driver Example
task type Bus_Driver (Num : Natural) is

entry Get_Ticket (R: in Request, M: in Money;
G : out Ticket) ;

-- money given with request, no change given!
end Bus_Driver;

task body Bus_Driver is
begin

loop
accept Get_Ticket (R: Request,

M: Money; G : out Ticket) do
-- take money
G := Next_Ticket(R);

end Get_Ticket;
end loop;

end Bus_Driver;

type Bus_T (N : Natural) is
record

....
Driver : Bus_Driver(N);

end record;

Number31 : Bus_T(31);
Number60 : Bus_T(60);
Number70 : Bus_T(70);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 58

Shop Keeper Example

task Shopkeeper is
entry Serve(X : Request; A: out Goods);
entry Get_Money(M : Money; Change : out Money);

end Shopkeeper;

task body Shopkeeper is
begin

loop
accept Serve(X : Request; A: out Goods) do

A := Get_Goods;
end Serve;

accept Get_Money(M : Money; Change : out Money) do
-- take money return change

end Get_Money;
end loop;

end Shopkeeper;

What is wrong with this algorithm?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 59

Customer

task Customer;
task body Customer is
begin

-- go to shop
Shopkeeper.Serve(Weekly_Shoping, Trolley);
-- leave shop in a hurry!

end Customer;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 60

Rider

task type Rider;
task body Rider is
begin

...
-- go to bus stop and wait for bus
while Bus /= Number31 loop

-- moan about bus service
end loop;

Bus.Bus_Driver.Get_Ticket(Heslington, Fiftyp, Ticket);
-- get in line
-- board bus, notice three more number 31 buses
...

end Rider;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 61

Other Facilities

'Count gives number of tasks queued on an entry
Entry families allow the programmer to declare, in
effect, a single dimension array of entries
Nested accept statements allow more than two tasks
to communicate and synchronise
A task executing inside an accept statement can also
execute an entry call
Exceptions not handled in a rendezvous are
propagated to both the caller and the called tasks
An accept statement can have exception handlers

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 62

Families
task Multiplexer is

entry Channel(1..3)(X : Data);
end Multiplexer;

task body Multiplexer is
begin

loop
for I in 1..3 loop

accept Channel(I)(X : Data) do
-- consume input data on channel I
end Channel;

end loop;
end loop;

end Multiplexer;

A family
declaration

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 63

Grocery Store

type Counter is (Meat, Cheese, Wine);
task Edeka_Server is

entry Serve(Counter)(Request: . . .);
end Edeka_Server;

task body Edeka_Server is
begin

loop
accept Serve(Meat)(. . .) do . . . end Serve;
accept Serve(Cheese)(. . .) do . . . end Serve;
accept Serve(Wine)(. . .) do . . . end Serve;

end loop
end Edeka_Server;

What happens if all queues are full?
What happens if the Meat queue is empty?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 64

Nested Accepts

task body Controller is
begin

loop
accept Doio (I : out Integer) do

accept Start;
accept Completed (K : Integer) do

I := K;
end Completed;

end Doio;
end loop;

end Controller;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 65

Shopkeeper Example

task Shopkeeper is
entry Serve_Groceries(. . .);
entry Serve_Tobacco(. . .);
entry Serve_Alcohol(. . .);

end Shopkeeper;

task body Shopkeeper is
begin

. . .
accept Serve_Groceries (. . .) do

-- no change for a €10 note
accept Serve_ Alcohol(. . .) do

-- serve another Customer,
-- get more change

end Serve_ Alcohol
end Serve_Groceries
. . .

end Shopkeeper;

Can not have
accept Serve_Groceries (. . .) do

accept Serve_Groceries(. . .) do
. . .

end Serve_Groceries
end Serve_Groceries

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 66

Entry Call within Accept Statement

task Car_Spares_Server is
entry Serve_Car_Part(Number: Part_ID; . . .);

end Car_Spares_Server ;

task body Car_Spares_Server is
begin

. . .
accept Serve_Car_Part(Number: Part_ID; . . .) do

-- part not is stock
Dealer.Phone_Order(. . .);

end Serve_Car_Part;
. . .

end Car_Spares_Server;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 67

Exceptions

accept Get(R : out Rec; Valid_Read : out Boolean) do
loop

begin
Put("VALUE OF I?"); Get(R.I);
Put("VALUE OF F?"); Get(R.F);
Put("VALUE OF S?"); Get(R.S);
Valid_Read := True;
return;

exception
when Ada.Text_IO.Data_Error =>

Put("INVALID INPUT: START AGAIN");
end;

end loop;
exception

when Ada.Text_IO.Mode_Error =>
Valid_Read := False;

end Get;

return
from
accept

exception raised

If not handled anywhere
exception raised in calling
task and the ‘accept’ task

could be handled here

or here

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 68

Private Entries

Public entries are visible to all tasks which have
visibility to the owning task's declaration
Private entries are only visible to the owning task

if the task has several tasks declared internally; these tasks
have access to the private entry
if the entry is to be used internally by the task for
requeuing purposes
if the entry is an interrupt entry, and the programmer
does not wish any software task to call this entry

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 69

Private Entries II
task type Telephone_Operator is

entry Report_Fault(N : Number);

private
entry Allocate_Repair_Worker(N : out Number);

end Telephone_Operator;

task body Telephone_Operator is
Failed : Number;
task type Repair_Worker;
Work_Force:array (1.. Num_Workers) of Repair_Worker;

task body Repair_Worker is
Job : Number:

begin
...
Telephone_Operator.Allocate_Repair_Worker(Job);
...

end Repair_Worker;

private entry

internal task

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 70

Private Entries III

begin
loop

accept Report_Fault(N : Number) do
Failed := N;

end Report_Fault;

-- log faulty line
if New_Fault(Failed) then -- new fault

accept Allocate_Repair_Worker(N : out Number) do
N := Failed;

end Allocate_Repair_Worker;
end if;

end loop;
end Telephone_Operator;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 71

Selective Accept

The selective accept allows the server to:
wait for several rendezvous at any one time
time-out if no rendezvous is forthcoming within a
specified time
withdraw its offer to communicate if no rendezvous
is available immediately
terminate if no clients can possibly call its entries

The select statement comes in four forms:
Select_statement ::=

selective_accept |
conditional_entry_call |
timed_entry_call |
asynchronous_select

So far, the receiver of a message must wait until the specified
process, or mailbox, delivers the communication
A receiver process may actually wish to wait for any one of a
number of processes to call it
Server processes receive request messages from a number of
clients; the order in which the clients call being unknown to
the servers
To facilitate this common program structure, receiver
processes are allowed to wait selectively for a number of
possible messages
Based on Dijkstra’s guarded commands (1975)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 72

Syntax Definition

selective_accept_alternative ::=
accept_alternative |
delay_alternative |
terminate_alternative

accept_alternative ::=
accept_statement [sequence_of_statements]

delay_alternative ::=
delay_statement [sequence_of_statements]

terminate_alternative ::=
terminate;

Selective_accept ::=
select

[guard]
selective_accept_alternative

{ or
[guard]
selective_accept_alternative

[else
sequence_of_statements]

end select;

guard ::= when <condition> =>

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 73

Overview Example
task Server is

entry S1(...);
entry S2(...);

end Server;

task body Server is
...

begin
loop

select
accept S1(...) do

-- code for this service
end S1;

or
accept S2(...) do

-- code for this service
end S2;

end select;
end loop;

end Server;

Simple select with
two possible actions

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 74

Example

task type Telephone_Operator is
entry Directory_Enquiry (P : Name; A : Address;

N : out Number);
entry Directory_Enquiry (P : Name; PC : Postal_Code;

N : out Number);
entry Report_Fault(N : Number);

private
entry Allocate_Repair_Worker (N : out Number);

end Telephone_Operator;

task body Telephone_Operator is
Failed : Number;
task type Repair_Worker;
Work_Force : array(1.. Num_Workers) of

Repair_Worker;

task body Repair_Worker is separate;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 75

Example II

begin
loop

select
accept Directory_Enquiry(... ; A: Address...) do

-- look up number based on address
end Directory_Enquiry;

or
accept Directory_Enquiry(... ;

PC: Postal_Code...) do
-- look up number based on ZIP

end Directory_Enquiry;
or

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 76

Example III

or
accept Report_Fault(N : Number) do

...
end Report_Fault;

if New_Fault(Failed) then
accept Allocate_Repair_Worker (N : out

Number) do
N := Failed;

end Allocate_Repair_Worker;
-- update record of failed unallocated numbers

end if;
end select;

end loop;
end Telephone_Operator;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 77

Note

If no rendezvous are available, the select statement
waits for one to become available
If one is available, it is chosen immediately
If more than one is available, the one chosen is
implementation dependent (RT Annex allows order
to be defined)
More than one task can be queued on the same entry;
default queuing policy is FIFO (RT Annex allows
priority order to be defined)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 78

Edeka revisited
type Counter is (Meat, Cheese, Wine);
task Edeka_Server is

entry Serve(Counter)(Request: . . .);
end Edeka_Server;

task body Edeka_Server is
begin

loop
select

accept Serve(Meat)(. . .) do . . . end Serve;
or

accept Serve(Cheese)(. . .) do . . . end Serve;
or

accept Serve(Wine)(. . .) do . . . end Serve;
end select

end loop
end Edeka_Server;

What happens if all queues are full?
What happens if the Meat queue is empty?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 79

Guarded Alternatives

Each select accept alternative can have an associated
guard

The guard is a boolean expression which is evaluated
when the select statement is executed
If the guard evaluates to true, the alternative is eligible for
selection
If it is false, the alternative is not eligible for selection
during this execution of the select statement (even if client
tasks are waiting on the associated entry)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 80

Example of Guard

task body Telephone_Operator is
begin

...
select

accept Directory_Enquiry (...) do ... end;
or

accept Directory_Enquiry (...) do ... end;
or

when Workers_Available =>
accept Report_Fault (...) do ... end;

end select;
end Telephone_Operator;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 81

Delay Alternative

The delay alternative of the select statement allows
the server to time-out if an entry call is not received
within a certain period
The timeout is expressed using a delay statement,
and therefore can be relative or absolute
If the relative time is negative, or the absolute time
has passed, the delay alternative becomes equivalent
to the else alternative
More than one delay is allowed

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 82

Example: Periodic Execution

Consider a task which reads a sensors every 10
seconds, however, it may be required to change its
periods during certain modes of operation

task Sensor_Monitor is
entry New_Period(P : Duration);

end Sensor_Monitor;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 83

Periodic Execution II

task body Sensor_Monitor is
Current_Period : Duration := 10.0;
Next_Cycle : Time := Clock + Current_Period;

begin
loop

-- read sensor value etc.
select

accept New_Period(P : Duration) do
Current_Period := P;

end New_Period;
Next_Cycle := Clock + Current_Period;

or
delay until Next_Cycle;
Next_Cycle := Next_Cycle + Current_Period;

end select;
end loop;

end Sensor_Monitor;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 84

Delay Alternative: Error Detection

task body Watchdog is
Client_Failed : Boolean := False;

begin
loop

select
accept All_Is_Well;

or
delay 10.0;
-- signal alarm
Client_Failed := True;

end select;

exit when Client_Failed;
end loop;

end Watchdog;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 85

The Else Part

task body Sensor_Monitor is
Current_Period : Duration := 10.0;
Next_Cycle : Time := Clock + Current_Period;

begin
loop

-- read sensor value etc.
select

accept New_Period(P : Duration) do
Current_Period := P;

end New_Period;
else -- cannot be guarded

null;
end select;

Next_Cycle := Clock + Current_Period;
delay until Next_Cycle;

end loop;
end Sensor_Monitor;

else part

The else alternative is executed when no other
alternative is immediately executable

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 86

The Delay and the Else Part

Cannot mix else part and delay in the same select
statement.
The following are equivalent

select
accept A;

or
accept B;

else
C;

end select;

select
accept A;

or
accept B;

or
delay 0.0;
C;

end select;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 87

select
accept A;

or
delay 10.0;

end select;

select
accept A;

else
delay 10.0;

end select;

More on Delay

What is the difference?

select
accept A;

or
delay 5.0;
delay 5.0;

end select;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 88

The Terminate Alternative

In general a server task only needs to exist when
there are clients to serve
The very nature of the client server model is that the
server does not know the identity of its clients
The terminate alternative in the select statement
allows a server to indicate its willingness to terminate
if there are no clients that could possibly request its
service
The server terminates when a master of the server is
completed and all its dependants are either already
terminated or are blocked at a select with an open
terminate alternative

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 89

Program Error

If all the accept alternatives have guards then there is
the possibility in certain circumstances that all the
guards will be closed
If the select statement does not contain an else clause
then it becomes impossible for the statement to be
executed
The exception Program_Error is raised at the
point of the select statement if no alternatives are
open

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 90

The Selective Accept : Summary

A selective accept must contain at least one accept
alternative (each possibly guarded)
A selective accept may contain one and only one of
the following :

a terminate alternative (possibly guarded), or
one or more delay alternatives (each possibly guarded),
or
an else part

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 91

The Selective Accept : Summary II

A select alternative is open if it does not contain a
guard or if the boolean condition associated with the
guard evaluates to true; otherwise the alternative is
closed
On execution, all of the following are evaluated:

all guards
open delay expressions
open entry family expressions

A choice is made from the open alternatives

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 92

Non-determinism and Selective Waiting
Concurrent languages make few assumptions about
the execution order of processes
A scheduler is assumed to schedule processes non-
deterministically
Consider a process P that will execute a selective
wait construct upon which processes S and T could
call

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 93

Possible Execution Orders
1) P runs first; it is blocked on the select. S (or T) then

runs and rendezvous with P
2) S (or T) runs, blocks on the call to P; P runs and

executes the select; a rendezvous takes place with S
(or T)

3) S (or T) runs first and blocks on the call to P; T (or
S) now runs and is also blocked on P. Finally P runs
and executes the select on which T and S are waiting

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 94

Comparison
The three possible interleavings lead to P having
none, one or two calls outstanding on the selective
wait
If P, S and T can execute in any order then, in latter
case, P should be able to choose to rendezvous with
S or T — it will not affect the programs correctness

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 95

Non-determinism and Selective Waiting
A similar argument applies to any queue that a
synchronisation primitive defines
Non-deterministic scheduling implies all queues
should release processes in a non-deterministic order
Semaphore queues are often defined in this way;
entry queues and monitor queues are specified to be
FIFO
The rationale here is that FIFO queues prohibit
starvation but if the scheduler is non-deterministic
then starvation can occur anyway!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 96

Timed Entry Calls

A timed entry call issues an entry call which is
cancelled if the call is not accepted within the
specified period (relative or absolute)
Note: only one delay alternative and one entry call
can be specified

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 97

Timed Entry Calls II

task body Subscriber is
Stuarts_Number : Number;

begin
loop

...
select

An_Op.Directory_Enquiry("Stuart Jones",
"10 Main Street, York", Stuarts_Number);

-- log the cost of a directory enquiry call
or

delay 10.0;
-- phone up Stuart's parents and ask them;
-- log the cost of a long distance call

end select;
...

end loop;
end Subscriber;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 98

Timed Entry Calls III

task body Telephone_Operator is
...

begin
loop

-- prepare to accept next request
select

accept Directory_Enquiry(Person : Name;
Addr : Address; Num : out Number) do
delay 3600.0; -- take a lunch break

end Directory_Enquiry; or
...

end select;
...

end loop;
end Telephone_Operator;

Time-out is on the start of the
rendezvous not the finish

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 99

Conditional Entry Call

The conditional entry call allows the client to
withdraw the offer to communicate if the server task
is not prepared to accept the call immediately
It has the same meaning as a timed entry call where
the expiry time is immediate

select

Security_Op.Turn_Lights_On;

else

null; -- assume they are on already

end select;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 100

Conditional Entry Call II

A conditional entry call should only be used when
the task can genuinely do other productive work, if
the call is not accepted
Care should be taken not to program polling, or busy-
wait, solutions unless they are explicitly required
Note, the conditional entry call uses an else, the
timed entry call an or

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 101

Conditional Entry Call III

They cannot be mixed, nor can two entry call
statements be included
A client task can not therefore wait for more than one
entry call to be serviced

The asynchronous select statement allows some of
these restrictions to be overcome

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 102

Task States

created

non-existing

finalising

activating

executing

completed

non-existing

terminated

delayed

waiting child activation waiting dep. termination

waiting on
an entry call

waiting on
an accept

waiting for the end
of a rendezvous waiting on select

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_20.sdd Foil 103

Summary Ada Message Passing

Ada has remote invocation with direct asymmetric
naming
Communication in Ada requires one task to define an
entry and then, within its body, accept any incoming
call. A rendezvous occurs when one task calls an
entry in another
Selective waiting allows a process to wait for more
than one message to arrive.
Ada’s select statement has two extra facilities: an
else part and a terminate alternative

