
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 1

Real-Time Systems Programming

POSIX Coordination

Summer-Semester 2002
Lecture 21

27 June 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 2

The 5 Minute Review Session

1) What is coordination? Which coordination
mechanisms do you know?

2) What is mutual exclusion?
3) What is deadlock? What is livelock?
4) What is a conditional critical region? What is a

monitor?
5) What does Java's synchronized modifier mean?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 3

Coordination in POSIX

Reliable? Flexible? Fast?
Signals Sometimes Very No
Semaphores Yes Very Very (w/ shared memory)

Yes Not very Not particularly
Shared Memory Yes Very Very (w/ semaphores)

Messages
(pipes, fifos, msg queues)

 Signals:
 An asynchronous event handling mechanism
 Can also be used as a low-bandwidth

communication means
 Treated in more detail later

 Semaphores
 Can be used to synchronize access to shared

memory
 However, can also be used as a low-bandwidth

communication mechanism in itself
 POSIX.1b provides counting semaphore
 See Lecture 19

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 4

Where are we?

POSIX messages
Pipes
Fifos
Msg queues

POSIX shared memory

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 5

POSIX.1 Messages – Pipes and FIFOs

An indirect communication means
A pipe consists of two file descriptors

These are the writing and the reading end
Can use standard read and write with these file
descriptors (fds)
File descriptors remain open in processes created via
fork and exit – thus allowing inter-process
communication

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 6

Pipes and FIFOs cont.

Pipes/FIFOs are more appropriate than signals as a
communication channel

Do not require handler functions, masking, etc.
Data are queued internally
Can be synchronous or asynchronous

Switch via O_NONBLOCK flag in file descriptor

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 7

Plumbing Hints for Pipes

The following is a sequence of steps for setting up
pipes between processes:

1) Call pipe to create the pipe
2) Call fork – both child and parent now have access to the

pipe
3) As the child process will exec a new process with its own

memory image (which does not include the fds of the pipe),
will have to duplicate the fds into known locations (in the
example, MY_PIPE_READ and MY_PIPE_WRITE). We
can use dup2 for that purpose; but first, close the new fds
to make sure that they are available

4) The child calls exec

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 8

Example of POSIX Pipes

Server process communicates to terminals via pipes

int pipe_ends[2];

// Create a new client process
PIPE(pipe_ends);
child = fork();
if (child) {

// Parent process
break;

} else {
// Child process
// Make the pipe ends be fds MY_PIPE_READ and MY_PIPE_WRITE
CLOSE(MY_PIPE_READ);
CLOSE(MY_PIPE_WRITE);
DUP2(pipe_ends[0], MY_PIPE_READ);
DUP2(pipe_ends[1], MY_PIPE_WRITE);
CLOSE(pipe_ends[0]);
CLOSE(pipe_ends[1]);
EXECLP("terminal", arg1, arg2, ..., NULL);

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 9

Limitations of Pipes I

Pipes are used for communication in a "pipelined"
manner

This corresponds to familiar shell syntax:
% prog1 | prog2 | prog3 | prog4

Can alter this linear topology using dup2 and close

Pipes are only one-directional
Need two pipes for bidirectional communication

Using pipes for inter-process communicaton requires a
child-parent relationship between the communicating
processes

What if multiple clients want to communicate with
multiple servers?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 10

FIFOs

A FIFO is a pipe that has a name in the file system
Any process with the appropriate permissions can
access the pipe
This removes the restrictions on the topology of
communicating processes
FIFOs are created with mkfifo
FIFOs are opened with open

This now (unlike pipe) returns only one file descriptor
Opening with O_RDONLY returns the reading end
Opening with O_WRONLY returns the writing end
Results of opening with O_RDWR are undefined

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 11

Limitations of Pipes II

Prioritization
A pipe is strictly FIFO
There is no built-in means for message prioritization
Could prioritize at application level – but this would
require significant overhead

Asynchronicity
In principle, do not have to wait for somebody reading
what we have written if we use O_NONBLOCK
However, there is only limited buffer space – when this
fills up, the writer process starts blocking again
There is no portable way to control (or just know) the
amount of buffer space for a given pipe!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 12

Limitations of Pipes III

Lack of control over pipe structure
Pipes cannot provide any information about their state –
i.e., how many data have been written into a pipe

Lack of structure of the data stream
Pipes are fairly pure instances of the (very powerful) UNIX
file abstraction; a pipe is nothing more than a stream of
bytes
Can read or write an arbitrary number of bytes at a time

This can be problematic if variable-sized messages are
passed
A single offset error can corrupt all subsequent
messages

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 13

System V UNIX Message Queues

System V UNIX provides message queues that
provide inter-procedure calls (IPCs)
However, are clumsy to use:

Named by numbers, rather than strings
ipcs and ipcrm maintain separate "namespace"

Are very slow
Hence, POSIX.1b working group abandoned System
V message queues (as well as e.g. its semaphores and
shared memory) in favor of something new

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 14

POSIX Message Queues

POSIX message queues (henceforth abbreviated
MQs) are named objects which operate basically as
pipes do – however:

An MQ can have many readers and many writers
Priority may be associated with messages

Intended for communication between processes (not
threads)
Early draft proposals were very flexible

Allowed for example the passing of messages without
copying (instead just mapping from address space to
address space)
However, the resulting complexity lead to very slow
implementations

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 15

POSIX MQs

The final definition of MQs leans more toward
simplicity
MQs have attributes which indicate their maximum
size, the size of each message, the number of
messages currently queued etc.
An attribute object is used to set the queue attributes
when the MQ is created

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 16

POSIX MQs

MQs are given a name when they are created
To gain access to the queue, requires an mq_open
name

mq_open is used to both create and open an already
existing MQ

#include <mqueue.h>
mqd_t child_mq;
struct mq_attr child_mq_attr;

child_mq= mq_open("/terminal.0",
O_CREAT|O_EXCL|O_RDWR,
MS_IRWXU, &child_mq_attr);

if (child_mq == mqd_t – 1) {
perror("mq_open");

}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 17

Naming and Accessing MQs

MQs are named like files, and opening them does
look a lot like opening a file
However, unlike FIFOs and pipes, message queues
are not accessed using open, read and write;
instead, sending and receiving messages is done via
mq_send and mq_receive

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 18

MQ Naming cont.

Naming MQs like files allows vendors to implement
message queues using the UNIX file system
However, the system calls associated with the file
system have a significant overhead
Therefore, MQs are often implemented w/o
accessing the file system – try ls to find out!
Recall: UNIX pathnames may be

absolute: beginning with a slash (“/”)
relative to the current working directory: without leading /

Whether or not MQs are implemented using the file
system may affect portability

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 19

MQ Naming cont.

Example I:
Assume the current working directory is /home/joe
Assume that we create MQs named
"/home/joe/my_mq" and "my_mq"
An implementation using the file system treats these MQs
as identical
Otherwise, the MQs are treated as being different

Example II:
Assume that different processes in different working
directories each create MQs named "my_mq"
An implementation using the file system treats these MQs
as different
Otherwise, the MQs are identical

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 20

Portable MQ Naming

Even if MQs are not using the file system,
implementations may differ how they interpret
slashes
To avoid the aforementioned portability problems,
one should follow these two rules in naming POSIX
MQs:

1. Start the name with a /
2. Do not use any other / characters

An implementation may interpret a slash as a
special character, separating components as
directories, and performing proper permission
checks
Other implementations may treat slashes like any
other characters, and use the whole name just as a
hash key
The conformance document of the product should
tell you what is actually happening on your system

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 21

POSIX MQs

Data are read/written from/to a character buffer.
If the buffer is full or empty, the sending/receiving
process is blocked unless the attribute
O_NONBLOCK has been set for the queue (in
which case an error return is given)
If senders and receivers are waiting when an MQ
becomes unblocked, it is not specified which one is
woken up unless the priority scheduling option is
specified

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 22

POSIX MQs

A process can also indicate that a signal should be
sent to it when an empty queue receives a message
and there are no waiting receivers
In this way, a process can continue executing whilst
waiting for messages to arrive or one or more
message queues
It is also possible for a process to wait for a signal to
arrive; this allows the equivalent of selective waiting
to be implemented
If the process is multi-threaded, each thread is
considered to be a potential sender/receiver in its
own right

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 23

Robot Arm Example I

typedef enum {xplane, yplane, zplane} dimension;

void move_arm(int D, int P);

#define DEFAULT_NBYTES 4
int nbytes = DEFAULT_NBYTES;

#define MQ_XPLANE "/mq_xplane" // MQ name
#define MQ_YPLANE "/mq_yplane" // MQ name
#define MQ_ZPLANE "/mq_zplane" // MQ name
#define MODE ... // Mode info for mq_open

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 24

Robot Arm Example II

void controller(dimension dim) {
int position, setting;
mqd_t my_queue; // Message queue
struct mq_attr ma; // Attributes
char buf[DEFAULT_NBYTES];
ssiz_t len;

position = 0;
switch(dim) { // open appropriate message queue

case xplane:
my_queue = MQ_OPEN(MQ_XPLANE, O_RDONLY, MODE, &ma);
break;

case yplane:
my_queue = MQ_OPEN(MQ_YPLANE,...);
break;

case zplane:
my_queue = MQ_OPEN(MQ_ZPLANE,...);
break;

default:
return;

};

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 25

Robot Arm Example III

while (1) {
// read message
len = mq_receive(my_queue, &buf[0], nbytes, null);
setting = *((int *)(&buf[0]));
position = position + setting;
move_arm(dim, position);

};
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 26

Robot Arm Example IV

int main(int argc, char **argv) {
mqd_t mq_xplane, mq_yplane, mq_zplane;
struct mq_attr ma; // queue attributes
int xpid, ypid, zpid;
char buf[DEFAULT_NBYTES];

// Set MQ attributes
ma.mq_flags = 0; // No special behaviour
ma.mq_maxmsg = 1;
ma.mq_msgsize = nbytes;

mq_xplane = MQ_OPEN(MQ_XPLANE, O_CREAT|O_EXCL, MODE, &ma);
mq_yplane = ...;
mq_zplane = ...;

The main program that creates the controller processes
and passes them the appropriate coordinates:

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 27

// Duplicate the process to get three controllers
switch (xpid = FORK()) {
case 0: controller(xplane); exit(0); // child
default: // parent
switch (ypid = FORK()) {

case 0: controller(yplane); exit(0);
default: // parent
switch (zpid = FORK()) {

case 0: controller(zplane); exit(0);
default: // parent

break;
}

}
}

while (1) {
// set up buffer to transmit each co-ordinate
// to the controllers, for example
MQ_SEND(mq_xplane, &buf[0], nbytes, 0);

}
}

Robot Arm Example V

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 28

Closing and Unlinking MQs

If we can open MQs, we must be able to close them
again
Similarly, if we can create MQs, we must be able to
delete them again
The functions mq_close and mq_unlink provide
these functionalities, mimicking their corresponding
file-based calls, close and unlink

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 29

Closing MQs

Calling mq_close has no effect on the contents of
the MQ

We can open an MQ, send ten messages to the queue,
close the queue, open it again the next day, and retrieve
those ten messages again

MQs are closed when the process creating them calls
exit, _exit, or one of the exec functions
This is somewhat different from files, where a file
can be prevented from being closed upon calling an
exec function (by clearing the FD_CLOEXEC flag,
using fcntl)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 30

Unlinking MQs

Calling mq_unlink does for message queues what
unlink does for files
If no one has the MQ open when mq_unlink is
called, then the MQ is immediately deleted, and all
the messages in it are lost
Otherwise, the destruction of the MQ is delayed until
the last processes closes the MQ

However, the name of the MQ is removed immediately
After mq_unlink is called, the only processes that can
access the MQ are the ones that had it open before
mq_unlink was called
Then again, if those processes fork, their children can
also access the MQ, as MQs are inherited across fork,
like files

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 31

Cleaning Up After Yourself

Message queues, like files, are persistent
they continue to exist even if no one has the queue open
they are not eliminated when the process creating them
ceases to exist
they are only eliminated when the system goes down

However, as message queues do not necessarily exist
in the file space, we may not be able to remove the
message queues – there is no POSIX equivalent of
rm for MQs!
Therefore, unless we still want those MQs for
debugging purposes, it is recommended to unlink the
MQs as soon as everybody who needs them has
opened them

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 32

Limitations of POSIX MQs

MQs have some definite advantages over pipes and
FIFOs, but some limitations remain:

They are queues after all
This may be clumsy for some apps
Examples: stack-based operations; general data sharing

Efficiency
MQs always require two copy operations – from the
sending app to the OS, from the OS to the receiving app
It would be faster to let the OS decide about the target
memory location – but this is outside of POSIX.1b

An alternative here is shared memory

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 33

Where are we?

POSIX messages
POSIX shared memory

Naming, opening
Memory mapping
Aligning
For regular files: synchronization

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 34

Shared Memory

Very low-level means of communication
Pro: Flexibility, Speed
Con:

More difficult to use than signals or message queues –
access has to be explicitly synchronized (e.g. with
semaphores, mutexes, condition variables)
Unlikely to perform well in a distributed environment
(unless we have an architecture that explicitly supports
distributed shared memory)

POSIX.1b defines a shared memory interface

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 35

POSIX Shared Memory

Per default, different processes operate on different
pieces of memory
POSIX.1b defines a mechanism that allows
processors to share memory
If one process writes a value into a particular byte of
shared memory, the other process sees this
“immediately”

On multiprocessor systems – ruled outside of the scope of
POSIX.1b considerations – the actual delay depends on
the underlying hardware memory coherence system

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 36

Complications with Shared Memory

The OS is not involved in your use of this memory –
there are no run-time checks, no copy operations
The free-form nature of shared memory allows
flexibility and efficiency – and also gives you the
freedom to hang yourself pretty badly!
Example: implementing a circular linked list in
shared memory

dequeue(element *e)
{

e->prev->next = e->next;
e->next->prev = e->prev;
e->next = e->prev = NULL;

}

What may happen
if two processors
dequeue at once?

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 37

More Complications: File Mapping

Another complications is related to how POSIX.1b
standardized shared memory – which is intertwined
with another facility: file mapping
File mapping allows an app to map a file into its
address space and then access it as if it were memory
File mapping works for any type of file:

Disk files
Frame buffers
... and shared memory

This complicates the shared memory interface
somewhat, as file mapping and shared memory have
somewhat diverging requirements

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 38

What does My System Provide?

In principle, an OS indicates the presence of shared
memory by defining
_POSIX_SHARED_MEMORY_OBJECTS

Shared memory requires file mapping – but a vendor
may be interested in just file mapping, without
providing shared memory
Hence, the following feature test macro zoo:

Function Present According to Which Options?

_POSIX_SHARED_MEMORY_OBJECTS

_POSIX_MEMORY_PROTECTION

mmap, munmap, ftruncate _POSIX_MAPPED_FILES or
_POSIX_SHARED_MEMORY_OBJECTS

shm_open, shm_close,
shm_unlink
mprotect

msync _POSIX_MAPPED_FILES and
_POSIX_SYNCHRONIZED_io

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 39

Memory is a File ... Sort Of

Shared memory, message queues, and semaphores
are all cousins in the POSIX world and have
interfaces similar to ordinary UNIX disk files

Similar naming
Similar schemes for creation and deletion, opening and
closing

However, each interface differs according to the
specific requirements of the functionalities
Message queues are the simplest of the lot – open the
queue, send a message
Shared memory requires file mapping as additional
step

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 40

Opening Shared Memory Objects

Shared memory objects (SMOs) are created with
shm_open:

shm_open takes exactly the same arguments as
open, and also returns a file descriptor
In this, shm_open is different from mq_open,
which returned an object of the type mqd_t, which
is not necessarily a file descriptor

#include <sys/mman.h>

int shm_open(const char *shared_memory_name,
int oflag, mode_t mode);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 41

Naming SMOs

shm_open operates on a name that looks like a file
name, but may not exist in the file system
Like message queues, SMOs may not show up in the
output of an ls
For portability, thus the same naming rules apply as
for message queues (recall ...)
Even though shm_open returns a normal file
descriptor, we cannot use most standard file
operations (read, write, lseek)
Exceptions: ftruncate (which set the size) and
close can both be used on shared memory objects

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 42

Creating SMOs

The oflag parameter of shm_open can be set to
O_RDONLY or O_RDWR to indicate the desired
access types
oflag also determines whether an SMO is created,
by setting O_CREAT
If we try to create an SMO that already exists,
shm_open fails silently – unless we also set
O_EXCL

Unlike message queues, no additional parameters
are needed to describe the newly created SMO – the
relevant parameters are set when the SMO is mapped
into your address space, using mmap

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 43

Sizing SMOs

However, there is one aspect of SMOs that neither
shm_open nor mmap address: the size of the SMO
An SMO has zero size when it is first created, or
when somebody opens it with the O_TRUNC flag set
POSIX.1b provides the (confusingly named)
ftruncate for changing an SMO's size:

If an existing SMO is reduced in size, the truncated
data are lost
If one process calls ftruncate, all processes see this

#include <unistd.h>

int ftruncate(int fd, off_t total_size);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 44

Closing SMOs

If we open something, we have to be able to close it
again
However, as shm_open returns a normal file
descriptor, and there is no other information needed
for closing a file, we can use the normal close
operation for closing an SMO

#include <sys/mman.h>

int fd; // File descriptor for SMO
int i;

fd = shm_open("/shared_memory", ...);
...
i = close(fd);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 45

Closing SMOs cont.

Recall that creating SMOs is a two-step procedure:
The SMO has to be opened (shm_open)
The SMO has to be mapped into memory (mmap)

close only undoes the first of these two steps, it
recycles the file descriptor
Once the memory is mapped in, one can safely close
the file descriptor – in fact, one should do so for
tidiness

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 46

Destroying SMOs

To really remove an SMO, we have to delete it using
shm_unlink

Unlinking an SMO has the same semantics as
unlinking a file or message queue

int i;

i = shm_unlink("/shared_memory");

If any processes are still using the SMO when it is
unlinked, then those instances of the SMO remain
viable until each individual process ceases to use
the SMO – each process has to close, and also
munmap, their shared memory before it truly ceases
to exist

exit and exec implicitly close SMOs

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 47

Mapping SMOs Into Memory

To get the SMO into the address space of a process,
one has to map the file descriptor returned by
shm_open into the processes address space using
mmap

mmap returns the address where the SMO is actually
placed

#include <sys/mman.h>

void *mmap(void *where_i_want_it,
size_t length,
int memory_protections,
int mapping_flags,
int fd,
off_t offset_within_shared_memory);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 48

Where the SMOs Will Be Placed

The first parameter to mmap, where_i_want_it,
is an address that we can pass in as a hint to the
system on where in memory the SMO shall be placed
However, a POSIX compliant system is not obliged
to obey this hint
If we want to insist on the hint being used, we can set
MAP_FIXED in the mapping flags

If the system is still unable to use the hint, mmap fails
Implementations do not have to support MAP_FIXED

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 49

Aligning SMOs Among Processes

Sometimes we do not really care where in memory
the SMO is placed – but we do care about different
processes having the SMO mapped to the same
addresses

For example, to share pointers among processes
One fairly portable way of aligning SMO objects in
the memory areas of different processes is the
following:

When the first maps in the SMO, let the system choose
the address, by giving a hint of zero
Then communicate the resulting address to the other
processes, and let the other processes use this address as a
hint

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 50

Where the System Places SMOs

Usually, the SMOs have to start at a page boundary
Typical page sizes are 4096 and 8192 – check
PAGESIZE to find the page granularity of your
system
For portable use of mmap, one has to make sure that
any specified address hint, as well as the file offset
and length, are multiples of PAGESIZE

Some systems check that this is the case
Others perform silent alignment!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 51

An Example of Silent Alignment

Assume the following scenario:
PAGESIZE = 4096
length = 5
offset_within_shared_memory = 10

mmap returns a pointer equal to 5 mod 4096 (5001,
8197, ...) - say it returns 5001

Then the address range 5001 ... 5010 constitutes our
shared memory
However, the remaining address ranges of that page –
4096 ... 5000 and 5011 ... 8191 – are now also shared
memory!

Any writes to these remaining ranges, outside of
what we asked for, are also visible to all processes!!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 52

Unmapping Shared Memory

Recall: once an SMO is mmaped, we can close the
file descriptor, and still retain the mapping

Mappings are inherited across a fork
Mappings are removed upon exit or exec

munmap explicitly unmaps SMOs

munmap removes the mappings for the pages
containing the address rage begin through begin +
length – 1
Again, better make sure that begin and length
are multiples of PAGESIZE

#include <sys/mman.h>

int munmap(void *begin, size_t length);

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 53

Shared Memory Persistence

Like message queues, POSIX.1b shared memory is
persistent: it remains around until it is explicitly
removed (or until the system shuts down)
Therefore, we can fill an SMO with data, unmap the
SMO, finish all processes, start a process again, and
retrieve those data again (Homework)
This persistence also means that we have to be
careful about the SMO contents when we first open
them, as they may already contain some (invalid)
data
It is therefore prudent to first unlink and then re-
create SMOs before using them

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 54

Backing Store

Recall: mmap can be used for any file object – shared
memory for example, but also physical files

We can refer to the underlying object that we have
mapped in as backing store
The memory range in which we have mapped the file
object is merely a shadow image of that backing store

In the case of SMOs, the shadow image and the
backing store are one and the same: the physical
memory to share information
With disk files, however, there is a dichotomy – at
any point in time, the backing store and its shadow
image do not have to be identical, and they have very
different access times

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 55

For Regular Files: Synchronization

The contents of the backing store and our shadow
image of it are only guaranteed to be identical

when the mappings are removed (munmap), or
when we explicitly synchronize the mapping

msync performs
this synchronization:

#include <unistd.h>
#ifdef _POSIX_MEMORY_PROTECTION
#ifdef _POSIX_SYNCHRONIZED_IO
#include <sys/mman.h>

void *begin;
size_t length;
int i, flags;

i = msync(begin, length, flags);
#endif
#endif

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 56

Summary POSIX Pipes and FIFOs

The main communication categories provided by
POSIX are signals, messages, and shared
memory/semaphores
POSIX message types are pipes, FIFOs, and message
queues
FIFOs are basically pipes with a name in the file
system – they are thus better suited for non-pipelined
topologies than pipes
However, both pipes and FIFOs are limited wrt

Prioritization (cannot assign priorities)
Asynchronicity (no control over buffer space)
Interrogability (cannot inquire about internal state)
Message structure (just a stream of bytes)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 57

Summary POSIX Message Queues I

POSIX message queues (MQs) allow asynchronous,
many to many communication, that also allows the
definition of priorities
The handling of MQs looks very much like the
handling of files
MQs may or may not be implemented using the
UNIX file system
Care must be taken with naming MQs in a portable
fashion

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 58

Summary POSIX Message Queues II

MQs are persistent
The application has to pay attention to cleaning up after
itself
There is no MQ-equivalent to what rm does for files
By themselves, MQs only go away when the system goes
down

Overall, MQs give more structure and control than
pipes and FIFOs, and they can easily be extended
across machine boundaries
However, MQs have some limitations as well

Even with priorities, MQs are still queues
The run-time overhead of the OS calls and copy
operations

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_21.sdd Foil 59

Summary Shared Memory

Shared memory is a low-level, bare bones means of
exchanging information between processes
Shared memory is very efficient, but has to be
handled with care – i.e., explicit synchronization
(semaphores, mutexes, etc.)
Using shared memory is a two-stage process:

Creation of the shared memory object (SMO)
Mapping the SMO into the processes memory

Like MQs, SMOs are persistent
SMOs are always aligned to page boundaries – we
should set lengths and offsets accordingly, to avoid
implicit alignments

