
 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 1

Real-Time Systems Programming

Scheduling

Summer-Semester 2002
Lecture 22

28 June 2002

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 2

Overview

Goal
To understand the role that scheduling and schedulability
analysis plays in verifying that real-time applications meet
their deadlines

Topics
Scheduling in the context of real-time systems
Rate and response requirements
Scheduling facilities under UNIX
Simple process model
The cyclic executive approach
Process-based scheduling

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 3

Scheduling of Real-Time Systems

Typical RT system: Concurrent tasks (processes,
threads, fibres)
What results are produced should not depend on
schedule
However, a RT-system has to meet certain deadlines
– and whether these deadlines are met or not
However, when the results are produced (and
whether deadlines are met) may depend on schedule
Furthermore, the functionality (what is produced)
may also depend on when tasks execute

Example: throughput measurement

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 4

Scheduling Concerns

Generally, we want to do one or more of the following:
Make sure A happens at or before time t
Make sure A happens before B
Make sure important job A is not delayed if that
delay is not part of A

Example: Job B has caused A to be swapped out to disk
Analyse the schedulability of a given task set

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 5

Rate and Response Requirements

Performance requirements fall into two broad
categories

Rate requirements: job A must run X times a second
Response requirements: if event B occurs, job C must
complete within Y msecs

Hardware I/O
Getting sensor inputs, controlling actuators
Example: on the Space Shuttle, the rate requirement on
the engine control during ascent is 100 Hz
Example: a phase change interrupt may have a certain
response requirement

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 6

Rate and Response Requirements

Data logging
Typically have a rate requirement on the data I/O

User I/O
Humans are fairly slow and non-deterministic I/O devices
Typically, they can wait (while the other tasks keep the
engines from blowing up)
However, faster is better

Background computation tasks
Have to run at some time
However, no stringent deadlines
Partial solutions may be acceptable

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 7

Standard Scheduling under UNIX

Standard UNIX runs a time-sharing scheduler whose
behavior is undefined by any standard
Crucial item for any time-sharing scheduler is to
balance the needs of

interactive or I/O bound tasks and
compute-bound tasks

Each process's scheduling priority is continuously
adjusted depending on what the process is doing

The more a process waits, the higher gets its priority

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 8

Being nice under UNIX

One additional parameter for assessing the current
priority of a process is the nice value of each process

Default value is 0
A positive value reduces the priority
A negative value increases the priority

Nice value is set with nice system call
Example: % nice -20 make huge_job

Can influence the average-case behavior of
processes this way

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 9

UNIX priocntl

UNIX System V introduced priocntl, which is
better suited for RT-scheduling than nice

Also supported under Solaris
Linux does not have it – yet (2.4.0 kernel)

Can specify
Scheduling class of a process – “RT” or “TS”
Scheduling priority
Scheduling quantum (seconds and nanoseconds)

If scheduling quantum is set to “infinity”, the process
will run in true FIFO-mode – that is, until it gets
blocked or voluntarily releases the CPU

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 10

UNIX priocntl Example – Part I

#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

#define VIRTUAL_PRIORITY 10

main()
{
pcinfo_t rt_class_info;
rtinfo_t *rtinfo;
pcparms_t my_rt_params;
rtparms_t *rtparms;

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 11

UNIX priocntl Example – Part II
// Check whether priority level is valid
strcpy(rt_class_info.pc_clname, “RT”);
priocntl(0, 0, PC_GETCID ; &rt_class_info);
rtinfo = (rtinfo_t *) rt_class_info.pc_clinfo;
if (rtinfo->rt_maxpri < VIRTUAL_PRIORITY) {
fprintf(stderr, “Cannot run at RT prio %d: max is %d\n”,
VIRTUAL_PRIORITY, rtinfo->rt_maxpri);

exit(1);
}

// Now set the process class and priority
my_rt_params.pc_cid = rt_class_info.pc_cid;
rt_parms = (rtparms_t *) my_rt_parms.pc_clparms;
rtparms->rt_pri = VIRTUAL_PRIORITY;
rtparms->rt_tqnsecs = RT_TQINF; // Infinity – run FIFO
rtparms->rt_tqsecs = 0; // This is now ignored

priocntl(P_PID, getpid(), PC_SETPARMS, &my_rt_parms);
}

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 12

Assessment of UNIX Scheduling

nice is easy to use, but ineffective for real-time
programming, as it only influences average case
behavior
priocntl is more powerful – but:

It is rather complicated in its use – better suited for system
administrators than for RT application designers
Portability is limited to SVR4 systems

The POSIX scheduling interfaces, discussed later,
give

a simple interface
good portability

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 13

Scheduling

In general, a scheduling scheme consists of:
An algorithm for ordering the use of system resources (in
particular the CPUs)
A means of predicting the worst-case behaviour of the
system when the scheduling algorithm is applied

The prediction can then be used to confirm the
temporal requirements of the application

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 14

Simple Process Model

The application is assumed to consist of a fixed set of
processes
All processes are periodic, with known periods
The processes are completely independent of each
other
All system's overheads, context-switching times and
so on are ignored (i.e, assumed to have zero cost)
All processes have a deadline equal to their period
(that is, each process must complete before it is next
released)
All processes have a known worst-case execution
time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 15

Cyclic Executives

One common way of implementing hard real-time
systems is to use a cyclic executive
Here the design is concurrent but the code is
produced as a collection of procedures
Procedures are mapped onto a set of minor cycles
that together constitute the complete schedule (or
major cycle)
Minor cycle dictates the minimum cycle time
Major cycle dictates the maximum cycle time
Main advantage: system is fully deterministic

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 16

Example of a Cyclic Executive

Process
a 25 10
b 25 8
c 50 5
d 50 4
 e 100 2

Period, T Computation Time, C

A process set:

loop
wait_for_interrupt;
proc_a; proc_b; proc_c;
wait_for_interrupt;
proc_a; proc_b; proc_d; proc_e;
wait_for_interrupt;
proc_a; proc_b; proc_c;
wait_for_interrupt;
proc_a; proc_b; proc_d;

end loop;

A cyclic
executive for
this process set:

No actual processes exist at run-time; each minor
cycle is just a sequence of procedure calls
The procedures share a common address space and
can thus pass data between themselves

This data does not need to be protected (via a
semaphore, for example) because concurrent
access is not possible

All “process” periods must be a multiple of the
minor cycle time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 17

Properties of Cyclic Executive

No actual processes exist at run-time; each minor
cycle is just a sequence of procedure calls
The procedures share a common address space and
can thus pass data between themselves

This data does not need to be protected (via a semaphore,
for example) because concurrent access is not possible

All “process” periods must be a multiple of the
minor cycle time

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 18

Problems with Cycle Executives

It is difficult to incorporate processes with long
periods

The major cycle time is the maximum period that can be
accommodated without secondary schedules

Sporadic activities cannot be incorporated
The cyclic executive is difficult to construct and
difficult to maintain — it is an NP-hard problem
Any “process” with a sizable computation time will
need to be split into a fixed number of fixed sized
procedures

This may cut across the structure of the code from a
software engineering perspective and may be error-prone

More flexible scheduling methods difficult to support

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 19

Process-Based Scheduling

An alternative to the cyclic executive:
Support processes directly
Determine which process should execute at any given
time by using scheduling attributes

Ignoring interprocess communication, a process is
then in either one of the following states:

Runnable
Suspended waiting for a timing event
(periodic processes)
Suspended waiting for a non-timing event
(sporadic processes)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 20

Scheduling Approaches

There are numerous scheduling approaches
Design and analysis an active research area

However, the number of scheduling schemes found
in current systems is still limited
Here, we will consider

Fixed-Priority Scheduling (FPS)
Earliest Deadline First (EDF)
Value-Based Scheduling (VBS)

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 21

Fixed-Priority Scheduling (FPS)

The most widely used approach and our main focus
Each process has a fixed, static, priority

Is computed pre-run-time
Execution order of runnable processes determined by
their priority
Note: In real-time systems, the “priority” of a process
is derived from its temporal requirements, not its
importance to the correct functioning of the system
or its integrity

The more critical processes often have the more stringent
timing requirements – but this is not necessarily the case

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 22

Earliest Deadline First (EDF) Scheduling

The runnable processes are executed in the order
determined by the absolute deadlines of the processes
The next process to run being the one with the
shortest (nearest) deadline
Although it is usual to know the relative deadlines of
each process (e.g. 25ms after release), the absolute
deadlines are computed at run time and hence the
scheme is classified as dynamic

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 23

Value-Based Scheduling (VBS)

If a system can become overloaded:
Use of simple static priorities or deadlines not sufficient
Need a more adaptive scheme

One approach:
Assign a value to each process
On-line value-based scheduling algorithm decides
which process to run next

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 24

Preemption and Non-Preemption

With priority-based scheduling, a high-priority
process may be released during the execution of a
lower priority one
In a preemptive scheme:

Immediate switch to the higher-priority process
Non-preemption:

Lower-priority process can complete before the other
executes

Deferred preemption (cooperative dispatching):
Lower-priority process can at least execute for some time
before being preempted

EDF and VBS can take on a preemptive or non-
preemptive form

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 25

Summary I

Deterministic temporal behavior is critical for real-
time systems; one important component to ensure
this is scheduling
The timing requirements can be divided into rate and
response requirements
Standard UNIX provides

nice: easy to use, ill-suited for RT requirements
priocntl: more powerful, complicated usage

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 26

Summary II

A scheduling scheme defines an algorithm for
resource sharing and a means of predicting the worst-
case behaviour of an application when that form of
resource sharing is used.
With a cyclic executive, the application code must be
packed into a fixed number of minor cycles such that
the cyclic execution of the sequence of minor cycles
(the major cycle) will enable all system deadlines to
be met
The cyclic executive approach has major drawbacks,
many of which are solved by priority-based systems

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 27

To Go Further

Chapter 13 of [Burns and Wellings 2001]
Chapter 5 of Gallmeister, POSIX.4: Programming for
the Real World, O'Really, 1995

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 28

Problem Set 11 – Due Mon, 8 July 2002

1) Create two programs that demonstrate the persistence of shared
memory objects (SMOs) – prog1 creates an SMO and writes to it,
prog2 then accesses the written data. What happens if you run prog1
multiple times? Modify prog1 such that it first unlinks the SMO
before re-creating it (3 pts)

2) Pipes and FIFOs are means to pass data from one process to another.
Write a program to characterize the bandwidth of pipes on your
machine. What results do you get? (3 pts)

3) Modify the robot you built last week such that:
The robot reads in an integer x, given as bar code; see also next page.
(4 pts)

Note: A quantitative success criterion is the max speed at which the
given bar codes will be correctly read; bonus points will be assigned
(in the discussion class) to the robot that meets this criterion best.

Have fun!

 R. v. Hanxleden SS 2002 – Real-Time Systems Programming – Lecture_22.sdd Foil 29

On the code to be used for the bar code reader:
It is a simplified version of the EAN (European Article Number), on which further information can be found at
http://www.tinohempel.de/info/mathe/ean/ean.htm.
The resolution of the codes is R = 5 mm.
We use a code that consists of one Start Delimiter (width 3R, see below for the encoding), followed by 4 decimal
digits d1...d4, concluded by an End Delimiter (width 4R).
Each decimal digit is encoded as a sequence of 4 light/dark lines, according to EAN Code A (see below), with a
total width of 7R.
The total length of the bar code is thus (3 + 7 + 7 + 7 + 7 + 4)R = 35R = 17.5cm.
The digits are interpreted as follows:

d1...d3 form an unsigned integer y (0 ≤ y ≤ 999).
y is mapped to signed integer x as x = (y < 500) ? y : (y – 1000); thus, -500 ≤ x ≤ 499.
d4 is a parity digit, computed as 9 – ((d1 + d2 + d3) mod 10). For example, 1233 would be a valid code
word, whereas 0000 and 1234 would be invalid.

Example bar codes are at
http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ss02/synch/homeworks/strichcodes.pdf

Start
Delimiter

Stop
Delimiter

Problem Set 11 contd.

